GEOMETRY

P = perimeter (or perimeter of base)

C = circumference

 ℓ = lateral height or slant height

A = area

B =area of base of a solid

SA = surface area

V = volume

Parallelogram

Trapezoid

Regular Polygon with *n* sides

Right Prism

Pyramid with Base that is a

Regular Polygon

(A pyramid with a square base is shown.)

$$SA = B + \frac{1}{2}\ell P$$

$$V = \frac{1}{3}Bh \qquad V = \frac{4}{3}\pi r^3$$

Right Circular Cone

Sphere

$$A = bh$$

$$A = bh$$
 $A = \frac{1}{2}(b_1 + b_2)h$ $A = \frac{1}{2}aP$

(A regular polygon with 6 sides is shown.)

$$A = \frac{1}{2} aP$$

(A right rectangular prism is shown.)

$$SA = 2B + Ph$$

V = Bh

$$V = \frac{1}{2}$$

 $SA = B + \pi r \ell$

$$SA = 2B + Ph$$
 $SA = B + \frac{1}{2}\ell P$ $SA = B + \frac{1}{2}\ell C$ $SA = 4\pi r^2$

$$V = \frac{1}{3}Bh$$

ELLIPSE with center (h, k) and a > b

$$\frac{(x-h)^2}{a^2} + \frac{(y-k)^2}{b^2} = 1 \qquad \text{OR} \qquad \frac{(x-h)^2}{b^2} + \frac{(y-k)^2}{a^2} = 1$$

$$\frac{(x-h)^2}{h^2} + \frac{(y-k)^2}{a^2} = 1$$

HYPERBOLA with center (h, k)

$$\frac{(x-h)^2}{a^2} - \frac{(y-k)^2}{h^2} = 1$$

$$\frac{(x-h)^2}{a^2} - \frac{(y-k)^2}{b^2} = 1 \qquad \text{OR} \qquad \frac{(y-k)^2}{a^2} - \frac{(x-h)^2}{b^2} = 1$$

INTEREST

A =value of investment at the end of t years

P =value of initial investment

r = annual interest rate, expressed as a decimal

t = number of years of investment

n = number of compounding periods per year

Simple Interest

$$A = P + Prt$$

Compounded *n* times per year

$$A = P\left(1 + \frac{r}{n}\right)^{nt}$$

Compounded Continuously

$$A = Pe^{rt}$$

TRIGONOMETRY

Law of Sines

$$\frac{\sin A}{a} = \frac{\sin B}{b} = \frac{\sin C}{c}$$

Law of Cosines

$$a^{2} = b^{2} + c^{2} - 2bc\cos A$$

$$b^{2} = a^{2} + c^{2} - 2ac\cos B$$

$$c^{2} = a^{2} + b^{2} - 2ab\cos C$$

Double-Angle Formulas

$$\sin(2\theta) = 2\sin\theta\cos\theta$$

$$\cos(2\theta) = \cos^2\theta - \sin^2\theta$$

$$= 1 - 2\sin^2\theta$$

$$= 2\cos^2\theta - 1$$

$$\tan(2\theta) = \frac{2\tan\theta}{1 - \tan^2\theta}$$

Sums and Differences

$$\sin(\alpha \pm \beta) = \sin\alpha\cos\beta \pm \cos\alpha\sin\beta$$
$$\cos(\alpha \pm \beta) = \cos\alpha\cos\beta \mp \sin\alpha\sin\beta$$
$$\tan(\alpha \pm \beta) = \frac{\tan\alpha \pm \tan\beta}{1 \mp \tan\alpha\tan\beta}$$

Half-Angle Formulas

$$\sin \frac{\theta}{2} = \pm \sqrt{\frac{1 - \cos \theta}{2}}$$

$$\cos \frac{\theta}{2} = \pm \sqrt{\frac{1 + \cos \theta}{2}}$$

$$\tan \frac{\theta}{2} = \pm \sqrt{\frac{1 - \cos \theta}{1 + \cos \theta}}$$

$$= \frac{1 - \cos \theta}{\sin \theta}$$

$$= \frac{\sin \theta}{1 + \cos \theta}$$

Pythagorean Identity

$$\sin^2\theta + \cos^2\theta = 1$$

SERIES

Arithmetic Series

 $a_1 =$ first term d = common difference

 $a_n = a_1 + (n-1)d = n$ th term

$$S_n = \sum_{k=1}^{n} [a_1 + (k-1)d] = \frac{n(a_1 + a_n)}{2}$$

Finite Geometric Series

 $a_1 =$ first term r = common ratio

$$S_n = \sum_{k=1}^{n} \left[a_1 + (k-1)d \right] = \frac{n(a_1 + a_n)}{2}$$

$$S_n = \sum_{k=1}^{n} a_1 \cdot r^{(k-1)} = \frac{a_1(1 - r^n)}{1 - r}, \text{ for } r \neq 1$$

$$S = \sum_{k=1}^{\infty} a_1 \cdot r^{(k-1)} = \frac{a_1}{1 - r}, \text{ for } |r| < 1$$

Infinite Geometric Series

 $a_1 =$ first term r = common ratio

$$S = \sum_{k=1}^{\infty} a_1 \cdot r^{(k-1)} = \frac{a_1}{1-r}$$
, for $|r| < 1$

COMBINATIONS, PERMUTATIONS, BINOMIAL PROBABILITY **Factorial**

$$k! = k(k-1)(k-2) \cdots 3 \cdot 2 \cdot 1$$

Combinations

The number of combinations of n objects taken r at a time:

$$_{n}C_{r} = \binom{n}{r} = \frac{n!}{r!(n-r)!}$$

Permutations

The number of permutations of *n* objects taken *r* at a time:

$$_{n}P_{r}=\frac{n!}{(n-r)!}$$

Binomial Theorem

$$(x+y)^n = \sum_{k=0}^n \binom{n}{k} x^{n-k} y^k$$