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Overview of the EdSurvey Package 

National Assessment of Educational Progress (NAEP) datasets from the National Center for Education 
Statistics (NCES) require special statistical methods to analyze. Because of their scope and complexity, the 
EdSurvey package gives users functions to perform analyses that account for both complex sample survey 
designs and the use of plausible values. 

The EdSurvey package also seamlessly takes advantage of the LaF package to read in data only when required 
for an analysis. Users with computers that have insuÿcient memory to read in entire NAEP datasets can 
still do analyses without having to write special code to read in just the appropriate variables. This situation 
is addressed directly in the EdSurvey package—behind the scenes and without any special tuning by the 
user. 

Vignette Outline 

This vignette will describe the basics of using the EdSurvey package for analyzing NAEP data as follows. 

• Notes

– Additional resources
– Vignette notation
– Software requirements

• Setting up the environment for analyzing NCES data

– Installing and loading EdSurvey
– Philosophy of Conducting Analyses Using the EdSurvey Package
– Downloading data
– Reading in data
– Getting to know the data format
– Removing special values

• Explore Variable Distributions with summary2
• Subsetting the data
• Retrieving data for further manipulation with getData
*This publication was prepared for NCES under Contract No. ED-IES-12-D-0002 with the American Institutes for Research.

Mention of trade names, commercial products, or organizations does not imply endorsement by the U.S. Government. 
†The authors would like to thank Young Yee Kim, Yuqi Liao, Dan Sherman, and Qingshu Xie for reviewing this document, 

as well as Jiayi Li and Fei Liu for conducting quality control tests to verify the functions in this document. 
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– Retrieving all variables in a dataset
– Applying rebindAttributes to use EdSurvey functions with manipulated data frames

• Correlating variables with cor.sdf

– Weighted correlations
– Unweighted correlations

• Making a table with edsurveyTable
• Computing the percentages of students with achievementLevels
• Calculating percentiles with percentile
• Preparing an edsurvey.data.frame.list

– Recoding variable names and levels using recode.sdf and rename.sdf
– Combining several edsurvey.data.frame objects into a single object
– Recommended workfow for standardizing variables in trend analyses

• Estimating the di˙erence in two statistics with gap

– Performing gap analysis and understanding the summary output
– Gap analysis of achievement levels and percentiles
– Gap analysis of jurisdictions

• Regression analysis with lm.sdf
• Multivariate regression with mvrlm.sdf
• Logistic regression analysis with glm.sdf, logit.sdf, and probit.sdf

– oddsRatio
– waldTest

• Quantile regression analysis with rq.sdf
• Mixed models with mixed.sdf
• Endnotes

– Memory usage
– Factors and factor analysis
– Summary and next steps
– Additional resources
– Methodology resources
– Reference

Vignette Notation 

This vignette displays examples using notation for R console input and output. R console input will be 
displayed within a gray box: 

inputCode <- c(2,"neat") 

R console output will be displayed next to a double hash mark (##). Here is an example where the user 
types inputCode into the console and the code output R gives after the double hash marks: 

inputCode 

## [1] "2" "neat" 
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Software Requirements 

Unless you already have R version 3.3.0 or later, install the latest R version—which is available online at https: 
//cran.r-project.org/. Users also may want to install RStudio desktop, which has an interface that many 
fnd easier to follow. RStudio is available online at https://www.rstudio.com/products/rstudio/download/. 

Setting Up the Environment for Analyzing NCES Data 

Installing and Loading EdSurvey 

Inside R, run the following command to install EdSurvey as well as its package dependencies: 

install.packages("EdSurvey") 

Once the package is successfully installed, EdSurvey can be loaded with the following command: 

library(EdSurvey) 

## Loading required package: car 

## Loading required package: carData 

## Loading required package: lfactors 

## lfactors v1.0.4 

## Registered S3 methods overwritten by 'lme4': 
## method from 
## cooks.distance.influence.merMod car 
## influence.merMod car 
## dfbeta.influence.merMod car 
## dfbetas.influence.merMod car 

## EdSurvey v2.4.0 

## 
## Attaching package: 'EdSurvey' 

## The following objects are masked from 'package:base': 
## 
## cbind, rbind 

Philosophy of Conducting Analyses Using the EdSurvey Package 

Recognizing that researchers using R statistical software come with varying levels of experience, the EdSurvey
package has provided multiple workfows to aid in this process of conducting survey analysis. The following 
graphic details the two recommended workfows: 
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The workfow has three sections: 

1. Understanding the data
2. Preparing the data for analysis
3. Running the analysis

The phase in which the two methods diverge is the second section. The EdSurvey package provides functions 
for users to clean and manipulate their data, but experienced R programmers might prefer to extract and 
manipulate their data using other R methods or supplementary packages to do so; each method is supported 
for performing EdSurvey analytical functions. 

Downloading Data 

Although the bulk of this vignette will focus on NAEP data, EdSurvey includes a family of download and 
read functions for international studies, including the following: 

• TIMSS: Trends in International Mathematics and Science Study and TIMSS Advanced (downloadTIMSS,
downloadTIMSSAdv)

• PIRLS: Progress in International Reading Literacy Study (downloadPIRLS)
• ePIRLS: Electronic Progress in International Reading Literacy Study (download_ePIRLS)
• CIVED: The Civic Education Study 1999 and International Civic and Citizenship Study

(downloadCivEDICCS)
• ICILS: International Computer and Information Literacy Study (downloadICILS)
• PISA: The Programme for International Student Assessment (downloadPISA)
• PIAAC: Programme for the International Assessment of Adult Competencies (downloadPIAAC)
• TALIS: Teaching and Learning International Survey (downloadTALIS)
• ECLS: Early Childhood Longitudinal Study (downloadECLS_K)
• HSLS: High School Longitudinal Study (downloadHSLS)
• ELS: Education Longitudinal Study (downloadELS)

For example, the downloadTIMSS function will download TIMSS data to a directory that the user specifes; for 
example, "C:/Data". One also can manually download desirable survey data from their respective websites. 

downloadTIMSS(years = 2015, root = "C:/", cache=FALSE) 

For restricted datasets such as NAEP, please follow their restricted use instructions to save the whole intact 
data folder to a directory and read the data from there. 
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Reading in Data 

Once the data have been prepared for your system, the read family of functions will open a connection to 
the specifed data fle to conduct your analysis. The read functions are as follows: 

• TIMSS: Trends in International Mathematics and Science Study and TIMSS Advanced (readTIMSS,
readTIMSSAdv)

• PIRLS: Progress in International Reading Literacy Study (readPIRLS)
• ePIRLS: Electronic Progress in International Reading Literacy Study (read_ePIRLS)
• CIVED: The Civic Education Study 1999 and International Civic and Citizenship Study

(readCivEDICCS)
• ICILS: International Computer and Information Literacy Study (readICILS)
• PISA: The Programme for International Student Assessment (readPISA)
• PIAAC: Programme for the International Assessment of Adult Competencies (readPIAAC)
• TALIS: Teaching and Learning International Survey (readTALIS)
• ECLS: Early Childhood Longitudinal Study (readECLS_K2011 and readECLS_K1998)
• HSLS: High School Longitudinal Study (readHSLS)
• ELS: Education Longitudinal Study (readELS)

For example, 2015 TIMSS data would be accessed by the readTIMSS function, selecting a data path, vector 
of countries, and gradeLvl of interest: 

TIMSS15 <- readTIMSS(path = "C:/TIMSS2015/"), countries = c("usa"), gradeLvl = "4") 

Each read function is unique given the di˙erences across survey designs, but the functions typically follow 
a standard convention across functions for ease of use. To learn more about a particular read function, 
use help(package = "EdSurvey") to fnd the survey of interest and refer to its help documentation for 
guidance. 

For NAEP, this is done using EdSurvey’s readNAEP function. 

Vignette Sample NCES Dataset To follow along with this vignette, load the NAEP Primer dataset 
M36NT2PM and assign it the name sdf with this call: 

sdf <- readNAEP(system.file("extdata/data", "M36NT2PM.dat", package = "NAEPprimer")) 

Note that this command uses a somewhat unusual way of identifying a fle path (the system.file function). 
Because the Primer data are bundled with the NAEPprimer package, the system.file function fnds it 
regardless of where the package was installed on a machine. All other datasets are referred to by their 
system path. 

NCES Dataset To load a unique NCES dataset for analysis, select the pathway to the DAT fle in the 
NAEP assessment folder, which needs to be in the NCES standard folder directory titled /Data: 

sdf2 <- readNAEP(path = '//.../Data/file.dat') 

Note that the function recognizes the naming convention used by NCES for NAEP fle names to determine 
which sample design and assessment information are attached to the resulting edsurvey.data.frame. The 
readNAEP function transparently accesses the necessary sample information and silently attaches it to the 
data.1

1The EdSurvey package uses the .fr2 fle in the /Select/Parms folder to assign this information to the edsurvey.data.frame. 
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It is possible that fle pathways using special characters in your local directory could cause problems with 
reading data into R. Commonly used characters that require escapes include single quotation marks ('), 
double quotation marks ("), and backslashes (\). The most general solution to resolving these issues is 
adding an escape (i.e., the backslash key: \) before each character. For example, add an escape before 
the single quote used in Nat'l, as well as before each backslash as copied from a hypothetical windows fle 
directory: 

# original 
"C:\2015 Nat'l Assessment Data\Data\file.dat" 

# updated with escapes: 
sdf2 <- readNAEP(path = "C:\\2015 Nat\'l Assessment Data\\Data\\file.dat") 

An alternative option would involve using the file.choose() function to select the data fle via a search 
window. The function opens your system’s default fle explorer to select a particular fle. This fle can be 
saved to an object, in this example chosenFile, which then can be read using readNAEP: 

chosenFile <- file.choose() 
sdf2 <- readNAEP(path = chosenFile) 

Once read in, both student and school data from an NCES dataset can be analyzed and merged after loading 
the data into the R working environment. The readNAEP function is built to connect with the student data 
fle, but it silently holds fle formatting for the school dataset when read. More details on retrieving school 
variables for analysis will be outlined later in this vignette with the getData function. 

Getting to Know the Data Format 

Information about an edsurvey.data.frame can be obtained in multiple ways. To get general data infor-
mation, simply call print by typing the name of the data.frame object (i.e., sdf) in the console. 

sdf 

## edsurvey.data.frame for 2005 NAEP (Mathematics) in USA 
## Dimensions: 17606 rows and 302 columns. 
## 
## There is 1 full sample weight in this edsurvey.data.frame: 
## 'origwt' with 62 JK replicate weights (the default). 
## 
## 
## There are 6 subject scale(s) or subscale(s) in this edsurvey.data.frame: 
## 'num_oper' subject scale or subscale with 5 plausible values. 
## 
## 'measurement' subject scale or subscale with 5 plausible values. 
## 
## 'geometry' subject scale or subscale with 5 plausible values. 
## 
## 'data_anal_prob' subject scale or subscale with 5 plausible values. 
## 
## 'algebra' subject scale or subscale with 5 plausible values. 
## 
## 'composite' subject scale or subscale with 5 plausible values (the 
## default). 
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## 
## 
## Omitted Levels: 'Multiple', 'NA', and 'Omitted' 
## 
## Default Conditions: 
## tolower(rptsamp) == "reporting sample" 
## Achievement Levels: 
## Basic: 262 
## Proficient: 299 
## Advanced: 333 

Some basic functions that work on a data.frame, such as dim, nrow, and ncol, also work on an 
edsurvey.data.frame.2 

2Use ?function in the R console to view documentation on base R and EdSurvey package functions (e.g., ?gsub or ?lm.sdf). 

They help check the dimensions of sdf. 

dim(x = sdf) 

## [1] 17606 302 

nrow(x = sdf) 

## [1] 17606 

ncol(x = sdf) 

## [1] 302 

The colnames function can be used to list all variable names in the data: 

colnames(x = sdf) 

## [1] "year" "cohort" "scrpsu" "dsex" "iep" "lep" "ell3" "sdracem" 
## [9] "pared" "b003501" "b003601" "b013801" "b017001" "b017101" "b018101" "b018201" 
## [17] "b017451" "m815401" "m815501" "m815601" "m815801" "m815701" "rptsamp" "repgrp1" 
## [25] "repgrp2" "jkunit" "origwt" "srwt01" "srwt02" "srwt03" "srwt04" "srwt05" 
## [33] "srwt06" "srwt07" "srwt08" "srwt09" "srwt10" "srwt11" "srwt12" "srwt13" 
## [41] "srwt14" "srwt15" "srwt16" "srwt17" "srwt18" "srwt19" "srwt20" "srwt21" 
## [49] "srwt22" "srwt23" "srwt24" "srwt25" "srwt26" "srwt27" "srwt28" "srwt29" 
## [57] "srwt30" "srwt31" "srwt32" "srwt33" "srwt34" "srwt35" "srwt36" "srwt37" 
## [65] "srwt38" "srwt39" "srwt40" "srwt41" "srwt42" "srwt43" "srwt44" "srwt45" 
## [73] "srwt46" "srwt47" "srwt48" "srwt49" "srwt50" "srwt51" "srwt52" "srwt53" 
## [81] "srwt54" "srwt55" "srwt56" "srwt57" "srwt58" "srwt59" "srwt60" "srwt61" 
## [89] "srwt62" "smsrswt" "mrps11" "mrps12" "mrps13" "mrps14" "mrps15" "mrps21" 
## [97] "mrps22" "mrps23" "mrps24" "mrps25" "mrps31" "mrps32" "mrps33" "mrps34" 
## [105] "mrps35" "mrps41" "mrps42" "mrps43" "mrps44" "mrps45" "mrps51" "mrps52" 
## [113] "mrps53" "mrps54" "mrps55" "mrpcm1" "mrpcm2" "mrpcm3" "mrpcm4" "mrpcm5" 
## [121] "m075201" "m075401" "m075601" "m019901" "m066201" "m047301" "m046201" "m066401" 
## [129] "m020101" "m067401" "m086101" "m047701" "m067301" "m048001" "m093701" "m086001" 
## [137] "m051901" "m076001" "m046001" "m046101" "m067701" "m046701" "m046901" "m047201" 
## [145] "m046601" "m046801" "m067801" "m066601" "m067201" "m068003" "m068005" "m068008" 
## [153] "m068007" "m068006" "m093601" "m053001" "m047801" "m086301" "m085701" "m085901" 
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## [161] "m085601" "m085501" "m085801" "m019701" "m020001" "m046301" "m047001" "m046501" 
## [169] "m066501" "m047101" "m066301" "m067901" "m019601" "m051501" "m047901" "m053101" 
## [177] "m143601" "m143701" "m143801" "m143901" "m144001" "m144101" "m144201" "m144301" 
## [185] "m144401" "m144501" "m144601" "m144701" "m144801" "m144901" "m145001" "m145101" 
## [193] "m013431" "m0757cl" "m013131" "m091701" "m072801" "m091501" "m091601" "m073501" 
## [201] "m052401" "m075301" "m072901" "m013631" "m075801" "m013731" "m013531" "m051801" 
## [209] "m093401" "m093801" "m142001" "m142101" "m142201" "m142301" "m142401" "m142501" 
## [217] "m142601" "m142701" "m142801" "m142901" "m143001" "m143101" "m143201" "m143301" 
## [225] "m143401" "m143501" "m105601" "m105801" "m105901" "m106001" "m106101" "m106201" 
## [233] "m106301" "m106401" "m106501" "m106601" "m106701" "m106801" "m106901" "m107001" 
## [241] "m107101" "m107201" "m107401" "m107501" "m107601" "m109801" "m110001" "m110101" 
## [249] "m110201" "m110301" "m110401" "m110501" "m110601" "m110701" "m110801" "m110901" 
## [257] "m111001" "m111201" "m111301" "m111401" "m111501" "m111601" "m111801" "yrsexp" 
## [265] "yrsmath" "t089401" "t088001" "t090801" "t090802" "t090803" "t090804" "t090805" 
## [273] "t090806" "t087501" "t088301" "t088401" "t088501" "t088602" "t088603" "t088801" 
## [281] "t088803" "t088804" "t088805" "t091502" "t091503" "t091504" "c052801" "c052802" 
## [289] "c052804" "c052805" "c052806" "c052807" "c052808" "c052701" "c046501" "c044006" 
## [297] "c044007" "c052901" "c053001" "c053101" "sscrpsu" "c052601" 

To conduct a more powerful search of NAEP data variables, use the searchSDF function, which returns 
variable names and labels from an edsurvey.data.frame based on a character string. The user can specify 
which data source (either “student” or “school”) the user would like to search. For example, the following 
call to searchSDF searches for the character string "book" in the edsurvey.data.frame and specifes the 
fileFormat to search the student data fle: 

searchSDF(string = "book", data = sdf, fileFormat = "student") 

## variableName Labels 
## 1 b013801 Books in home 
## 2 t088804 Computer activities: Use a gradebook program 
## 3 t091503 G8Math:How often use Geometry sketchbook 

The levels and labels for each variable search via searchSDF() also can be returned by setting levels = 
TRUE: 

searchSDF(string = "book", data = sdf, fileFormat = "student", levels = TRUE) 

## Variable: b013801 
## Label: Books in home 
## Levels (Lowest level first): 
## 1. 0-10 
## 2. 11-25 
## 3. 26-100 
## 4. >100 
## 8. Omitted 
## 0. Multiple 
## Variable: t088804 
## Label: Computer activities: Use a gradebook program 
## Levels (Lowest level first): 
## 1. Never or hardly ever 
## 2. Once or twice/month 
## 3. Once or twice a week 
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## 4. Almost every day 
## 8. Omitted 
## 0. Multiple 
## Variable: t091503 
## Label: G8Math:How often use Geometry sketchbook 
## Levels (Lowest level first): 
## 1. Never or hardly ever 
## 2. Once or twice/month 
## 3. Once or twice a week 
## 4. Almost every day 
## 8. Omitted 
## 0. Multiple 

The | (OR) operator can be used to search several strings simultaneously: 

searchSDF(string="book|home|value", data=sdf) 

## variableName Labels 
## 1 b013801 Books in home 
## 2 b017001 Newspaper in home 
## 3 b017101 Computer at home 
## 4 b018201 Language other than English spoken in home 
## 5 b017451 Talk about studies at home 
## 6 m086101 Read value from graph 
## 7 m020001 Apply place value (R1) 
## 8 m143601 Solve for x given value of n 
## 9 m142301 Identify place value 
## 10 t088804 Computer activities: Use a gradebook program 
## 11 t088805 Computer activities: Post homework,schedule info 
## 12 t091503 G8Math:How often use Geometry sketchbook 

A vector of strings is used to search for variables that contain multiple strings, such as both “book” and 
“home”; each string is present in the variable label and can be used to flter the results: 

searchSDF(string=c("book","home"), data=sdf) 

## variableName Labels 
## 1 b013801 Books in home 

To return the levels and labels for a particular variable, use levelsSDF(): 

levelsSDF(varnames = "b017451", data = sdf) 

## Levels for Variable 'b017451' (Lowest level first): 
## 1. Never or hardly ever (n=3837) 
## 2. Once every few weeks (n=3147) 
## 3. About once a week (n=2853) 
## 4. 2 or 3 times a week (n=3362) 
## 5. Every day (n=3132) 
## 8. Omitted* (n=575) 
## 0. Multiple* (n=9) 
## NOTE: * indicates an omitted level. 
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Access a full codebook using showCodebook(), retrieving the variable names, variable labels, and value labels 
of a survey. This function pairs well with the View() function to more easily explore a dataset: 

View(showCodebook(sdf)) 

Basic information about plausible values and weights in an edsurvey.data.frame can be seen in the 
print function. The variables associated with plausible values and weights can be seen from the 
showPlausibleValues and showWeights functions, respectively, when the verbose argument is set to TRUE: 

showPlausibleValues(data = sdf, verbose = TRUE) 

## There are 6 subject scale(s) or subscale(s) in this edsurvey.data.frame: 
## 'num_oper' subject scale or subscale with 5 plausible values. 
## The plausible value variables are: 'mrps11', 'mrps12', 'mrps13', 
## 'mrps14', and 'mrps15' 
## 
## 'measurement' subject scale or subscale with 5 plausible values. 
## The plausible value variables are: 'mrps21', 'mrps22', 'mrps23', 
## 'mrps24', and 'mrps25' 
## 
## 'geometry' subject scale or subscale with 5 plausible values. 
## The plausible value variables are: 'mrps31', 'mrps32', 'mrps33', 
## 'mrps34', and 'mrps35' 
## 
## 'data_anal_prob' subject scale or subscale with 5 plausible values. 
## The plausible value variables are: 'mrps41', 'mrps42', 'mrps43', 
## 'mrps44', and 'mrps45' 
## 
## 'algebra' subject scale or subscale with 5 plausible values. 
## The plausible value variables are: 'mrps51', 'mrps52', 'mrps53', 
## 'mrps54', and 'mrps55' 
## 
## 'composite' subject scale or subscale with 5 plausible values (the 
## default). 
## The plausible value variables are: 'mrpcm1', 'mrpcm2', 'mrpcm3', 
## 'mrpcm4', and 'mrpcm5' 

showWeights(data = sdf, verbose = TRUE) 

## There is 1 full sample weight in this edsurvey.data.frame: 
## 'origwt' with 62 JK replicate weights (the default). 
## Jackknife replicate weight variables associated with the full sample 
## weight 'origwt': 
## 'srwt01', 'srwt02', 'srwt03', 'srwt04', 'srwt05', 'srwt06', 'srwt07', 
## 'srwt08', 'srwt09', 'srwt10', 'srwt11', 'srwt12', 'srwt13', 'srwt14', 
## 'srwt15', 'srwt16', 'srwt17', 'srwt18', 'srwt19', 'srwt20', 'srwt21', 
## 'srwt22', 'srwt23', 'srwt24', 'srwt25', 'srwt26', 'srwt27', 'srwt28', 
## 'srwt29', 'srwt30', 'srwt31', 'srwt32', 'srwt33', 'srwt34', 'srwt35', 
## 'srwt36', 'srwt37', 'srwt38', 'srwt39', 'srwt40', 'srwt41', 'srwt42', 
## 'srwt43', 'srwt44', 'srwt45', 'srwt46', 'srwt47', 'srwt48', 'srwt49', 
## 'srwt50', 'srwt51', 'srwt52', 'srwt53', 'srwt54', 'srwt55', 'srwt56', 
## 'srwt57', 'srwt58', 'srwt59', 'srwt60', 'srwt61', and 'srwt62' 
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The functions getStratumVar and getPSUVar return the default stratum variable name or a PSU variable 
associated with a weight variable. 

EdSurvey:::getStratumVar(data = sdf) 

## [1] "repgrp1" 

EdSurvey:::getPSUVar(data = sdf) 

## [1] "jkunit" 

These are particularly useful for accessing the variables associated with the weights in longitudinal surveys. 

Removing Special Values 

The EdSurvey package uses listwise deletion to remove special values in all analyses by default. For example, 
in the NAEP Primer data, the omitted levels are returned when print(sdf) is called: Omitted Levels: 
'Multiple', 'NA', 'Omitted'. By default, these levels are excluded via listwise deletion. To use a di˙erent 
method, such as pairwise deletion, set defaultConditions = FALSE when running your analysis. 

Explore Variable Distributions With summary2 

The summary2 function produces both weighted and unweighted descriptive statistics for a variable. This 
functionality is particularly useful for gathering response information for survey variables when conducting 
data exploration. For NAEP data and other datasets that have a default weight variable, summary2 produces 
weighted statistics by default. If the specifed variable is a set of plausible values, and the weightVar option 
is non-NULL, summary2 statistics account for both plausible values pooling and weighting. 

summary2(sdf, "composite") 

## Estimates are weighted using weight variable 'origwt' 
## Variable N Weighted N Min. 1st Qu. Median Mean 3rd Qu. Max. 
## 1 composite 16915 16932.46 126.11 251.9623 277.4784 275.8892 301.1835 404.184 
## SD NA's Zero-weights 
## 1 36.5713 0 0 

By specifying weightVar = NULL, the function prints out unweighted descriptive statistics for the selected 
variable or plausible values: 

summary2(sdf, "composite", weightVar = NULL) 

## Estimates are not weighted. 
## Variable N Min. 1st Qu. Median Mean 3rd Qu. Max. SD NA's 
## 1 mrpcm1 16915 130.53 252.0600 277.33 275.8606 300.7200 410.80 35.89864 0 
## 2 mrpcm2 16915 124.16 252.2100 277.33 275.6399 300.6900 408.58 36.08483 0 
## 3 mrpcm3 16915 115.09 252.0017 277.19 275.6570 300.5600 398.17 36.09278 0 
## 4 mrpcm4 16915 137.19 252.4717 277.44 275.7451 300.5767 407.41 35.91078 0 
## 5 mrpcm5 16915 123.58 252.4900 277.16 275.6965 300.5000 395.96 36.10905 0 
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For a categorical variable, the summary2 function returns the weighted number of cases, the weighted percent, 
and the weighted standard error. For example, the variable b017451 (frequency of students talking about 
studies at home) returns the following output: 

summary2(sdf, "b017451") 

## Estimates are weighted using weight variable 'origwt' 
## b017451 N Weighted N Weighted Percent Weighted Percent SE 
## 1 Never or hardly ever 3837 3952.4529 23.34245648 0.4318975 
## 2 Once every few weeks 3147 3190.8945 18.84483329 0.3740648 
## 3 About once a week 2853 2937.7148 17.34960077 0.3414566 
## 4 2 or 3 times a week 3362 3425.8950 20.23270282 0.3156289 
## 5 Every day 3132 3223.8074 19.03921080 0.4442216 
## 6 Omitted 575 194.3312 1.14768416 0.1272462 
## 7 Multiple 9 7.3676 0.04351168 0.0191187 

Note that by default, the summary2 function includes omitted levels; to remove those, set omittedLevels = 
TRUE: 

summary2(sdf, "b017451", omittedLevels = TRUE) 

## Estimates are weighted using weight variable 'origwt' 
## b017451 N Weighted N Weighted Percent Weighted Percent SE 
## 1 Never or hardly ever 3837 3952.453 23.62386 0.4367548 
## 2 Once every few weeks 3147 3190.894 19.07202 0.3749868 
## 3 About once a week 2853 2937.715 17.55876 0.3486008 
## 4 2 or 3 times a week 3362 3425.895 20.47662 0.3196719 
## 5 Every day 3132 3223.807 19.26874 0.4467063 

Subsetting the Data 

A subset of a dataset can be used with EdSurvey package functions. In this example, a summary table is 
created with edsurveyTable after fltering the sample to include only those students whose value in the 
dsex variable is male and race (as variable sdracem) is either values 1 or 3 (White or Hispanic). Both value 
levels and labels can be used in EdSurvey package functions. 

sdfm <- subset(sdf, dsex == "Male" & (sdracem == 3 | sdracem == 1)) 
es2 <- edsurveyTable(formula = composite ~ dsex + sdracem, data = sdfm) 

es2 

Table 1: es2 

dsex sdracem N WTD_N PCT SE(PCT) MEAN SE(MEAN) 
Male White 5160 5035.169 76.11329 1.625174 287.6603 0.8995013 
Male Hispanic 1244 1580.192 23.88671 1.625174 260.8268 1.5822251 
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Retrieving Data for Further Manipulation With getData 

Data can be extracted and manipulated using the function getData. The function getData takes an 
edsurvey.data.frame and returns a light.edsurvey.data.frame containing the requested variables by 
either specifying a set of variable names in varnames or entering a formula in formula.3 

3Use ?getData for details on default getData arguments. 

To access and manipulate data for dsex and b017451 variables in sdf, call getData. In the following code, 
the head function is used, which reveals only the frst few rows of the resulting data: 

gddat <- getData(data = sdf, varnames = c("dsex","b017451"), 
omittedLevels = TRUE) 

head(gddat) 

## dsex b017451 
## 1 Male Every day 
## 2 Female About once a week 
## 3 Female Every day 
## 4 Male Every day 
## 6 Female Once every few weeks 
## 7 Male 2 or 3 times a week 

By default, setting omittedLevels to TRUE removes special values such as multiple entries or NAs. getData 
tries to help by dropping the levels of factors for regression, tables, and correlations that are not typically 
included in analysis. 

Retrieving All Variables in a Dataset 

To extract all data in an edsurvey.data.frame, defne the varnames argument as colnames(sdf), which 
will query all variables. Setting the arguments omittedLevels and defaultConditions to FALSE ensures 
that values that would normally be removed are included: 

lsdf0 <- getData(data = sdf, varnames = colnames(sdf), addAttributes = TRUE, 
omittedLevels = FALSE, defaultConditions = FALSE) 

dim(lsdf0) # excludes the one school variable in the sdf 
dim(sdf) 

Once retrieved, this dataset can be used with all EdSurvey functions. 

Applying rebindAttributes to Use EdSurvey Functions With Manipulated Data 
Frames 

A helper function that pairs well with getData is rebindAttributes. This function allows users to reassign 
the attributes from a survey dataset to a data frame that might have had its attributes stripped during 
the manipulation process. Once attributes have been rebinded, all variables—including those outside the 
original dataset—are available for use in EdSurvey analytical functions. 
For example, a user might want to run a linear model using composite, the default weight origwt, the 
variable dsex, and the categorical variable b017451 recoded into a binary variable. To do so, we can 
return a portion of the sdf survey data as the gddat object. Next, use the base R function ifelse to 
conditionally recode the variable b017451 by collapsing the levels "Never or hardly ever" and "Once 
every few weeks" into one level ("Rarely") and all other levels into "At least once a week". 
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gddat <- getData(data = sdf, varnames = c("dsex", "b017451", "origwt", "composite"), 
omittedLevels = TRUE) 

gddat$studyTalk <- ifelse(gddat$b017451 %in% c("Never or hardly ever", 
"Once every few weeks"), 

"Rarely", "At least once a week") 

From there, apply rebindAttributes from the attribute data sdf to the manipulated data frame gddat. 
The new variables are now available for use in EdSurvey analytical functions: 

gddat <- rebindAttributes(gddat, sdf) 
lm2 <- lm.sdf(formula = composite ~ dsex + studyTalk, data = gddat) 
summary(lm2) 

## 
## Formula: composite ~ dsex + studyTalk 
## 
## Weight variable: 'origwt' 
## Variance method: jackknife 
## JK replicates: 62 
## Plausible values: 5 
## jrrIMax: 1 
## full data n: 17606 
## n used: 16331 
## 
## Coefficients: 
## coef se t dof Pr(>|t|) 
## (Intercept) 281.69030 0.96690 291.3349 39.915 < 2.2e-16 *** 
## dsexFemale -2.89797 0.59549 -4.8665 52.433 1.081e-05 *** 
## studyTalkRarely -9.41418 0.79620 -11.8239 53.205 < 2.2e-16 *** 
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
## 
## Multiple R-squared: 0.0168 

Additional details on the features of the getData function appear in the vignette titled Using the getData 
Function in EdSurvey. 

Correlating Variables With cor.sdf 

The EdSurvey package features multiple correlation methods for data exploration and analysis that fully 
account for the complex sample design in NCES data by using the cor.sdf function.4 

4Use ?cor.sdf for details on default cor.sdf arguments. 

These features include 
the following correlation procedures: 

• Pearson product-moment correlations for continuous variables 
• Spearman rank correlation for ranked variables 
• Polyserial correlations for one categorical and one continuous variable 
• Polychoric correlations for two categorical variables 
• Correlations among plausible values of the subject scales and subscales (marginal correlation coeÿ-

cients, which uses Pearson type) 
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Weighted Correlations 

In the following example, b013801, t088001, and the full sample weight origwt are read in to calculate 
the correlation using the Pearson method. Similar to other EdSurvey functions, the data are removed 
automatically from memory after the correlation is run. 

cor_pearson <- cor.sdf(x = "b013801", y = "t088001", data = sdf, 
method = "Pearson", weightVar = "origwt") 

It is important to note the order of levels to ensure that the correlations are functioning as intended. Printing 
a correlation object will provide a condensed summary of the correlation details and the order of levels for 
each variable: 

cor_pearson 

## Method: Pearson 
## full data n: 17606 
## n used: 14492 
## 
## Correlation: -0.07269657 
## 
## Correlation Levels: 
## Levels for Variable 'b013801' (Lowest level first): 
## 1. 0-10 
## 2. 11-25 
## 3. 26-100 
## 4. >100 
## Levels for Variable 't088001' (Lowest level first): 
## 1. Less than 3 hours 
## 2. 3-4.9 hours 
## 3. 5-6.9 hours 
## 4. 7 hours or more 

Variables in cor.sdf can be recoded and reordered. Variable levels and values can be redefned given the 
desired specifcations. For example, b017451 and t088001 are correlated using the Pearson method, with the 
levels "2 or 3 times a week" and "Every day" of the variable b017451 being recoded to "Frequently" 
within a list of lists in the recode argument: 

cor_recode <- cor.sdf(x = "b017451", y = "t088001", data = sdf, 
method = "Pearson", weightVar = "origwt", 
recode = list(b017451 = list(from = c("2 or 3 times a week", "Every day"), 

to = c("Frequently")))) 
cor_recode 

## Method: Pearson 
## full data n: 17606 
## n used: 14468 
## 
## Correlation: -0.01949923 
## 
## Correlation Levels: 
## Levels for Variable 'b017451' (Lowest level first): 
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## 1. Never or hardly ever 
## 2. Once every few weeks 
## 3. About once a week 
## 4. Frequently 
## Levels for Variable 't088001' (Lowest level first): 
## 1. Less than 3 hours 
## 2. 3-4.9 hours 
## 3. 5-6.9 hours 
## 4. 7 hours or more 

Recoding can be useful when a level is very thinly populated (so it might merit combination with another 
level) or when changing the value label to something more appropriate for a particular analysis. 

The variables b017451 and t088001 are correlated using the Pearson method in the following example, with 
the variable t088001’s values "Less than 3 hours", "3-4.9 hours", "5-6.9 hours", "7 hours or 
more" being reordered to "7 hours or more", "5-6.9 hours", "3-4.9 hours", "Less than 3 hours" 
within a list: 

cor_reorder <- cor.sdf(x = "b017451", y = "t088001", data = sdf, 
method = "Pearson", weightVar = "origwt", 
reorder = list(t088001 = c("7 hours or more", "5-6.9 hours", 

"3-4.9 hours", "Less than 3 hours"))) 
cor_reorder 

## Method: Pearson 
## full data n: 17606 
## n used: 14468 
## 
## Correlation: 0.02048827 
## 
## Correlation Levels: 
## Levels for Variable 'b017451' (Lowest level first): 
## 1. Never or hardly ever 
## 2. Once every few weeks 
## 3. About once a week 
## 4. 2 or 3 times a week 
## 5. Every day 
## Levels for Variable 't088001' (Lowest level first): 
## 1. 7 hours or more 
## 2. 5-6.9 hours 
## 3. 3-4.9 hours 
## 4. Less than 3 hours 

Changing the order of the levels might be useful to modify a variable that is out of order or when reversing 
the orientation of a series. The reorder argument also is suitable when implemented in conjunction with 
recoded levels. 

NOTE: As an alternative, recoding can be completed within getData. To see additional examples of recoding 
and reordering, use ?cor.sdf in the R console. 

The marginal correlation coeÿcient among plausible values of the subject scales and subscales can be cal-
culated using the cor.sdf function and the Pearson method. The subject subscales num_oper and algebra 
are correlated in this example: 
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cor3_mcc <- cor.sdf(x = "num_oper", y = "algebra", data = sdf, method = "Pearson") 
cor3_mcc 

## Method: Pearson 
## full data n: 17606 
## n used: 16915 
## 
## Correlation: 0.8924728 

Use the showPlausibleValues function to return the plausible values of an edsurvey.data.frame for use 
in calculating the correlation coeÿcients between subject scales or subscales. 
The cor.sdf function features multiple methods for data exploration and analysis using correlations. The 
following example shows the di˙erences in correlation coeÿcients among the Pearson, Spearman, and poly-
choric methods using a subset of the edsurvey.data.frame data where dsex == 1 (saved as the sdf_dnf 
object), b017451, pared, and the full sample weight origwt: 

sdf_dnf <- subset(sdf, dsex == 1) 
cor_pearson <- cor.sdf(x = "b017451", y = "pared", data = sdf_dnf, 

method = "Pearson", weightVar = "origwt") 
cor_spearman <- cor.sdf(x = "b017451", y = "pared", data = sdf_dnf, 

method = "Spearman", weightVar = "origwt") 
cor_polychoric <- cor.sdf(x = "b017451", y = "pared", data = sdf_dnf, 

method = "Polychoric", weightVar = "origwt") 

cbind(Correlation = c(Pearson = cor_pearson$correlation, 
Spearman = cor_spearman$correlation, 
Polychoric = cor_polychoric$correlation)) 

## Correlation 
## Pearson 0.08027069 
## Spearman 0.06655288 
## Polychoric 0.06972564 

Plausible values for subject scales and subscales also can be correlated with variables using the cor.sdf 
function. In this case, the fve plausible values for composite, the variable b017451, and the full sample 
weight origwt are read in to calculate the correlation coeÿcients using the Pearson, Spearman, and polyserial 
methods: 

cor_pearson2 <- cor.sdf(x = "composite", y = "b017451", data = sdf_dnf, 
method = "Pearson", weightVar = "origwt") 

cor_spearman2 <- cor.sdf(x = "composite", y = "b017451", data = sdf_dnf, 
method = "Spearman", weightVar = "origwt") 

cor_polyserial2 <- cor.sdf(x = "composite", y = "b017451", data = sdf_dnf, 
method = "Polyserial", weightVar = "origwt") 

cbind(Correlation = c(Pearson = cor_pearson2$correlation, 
Spearman = cor_spearman2$correlation, 
Polyserial = cor_polyserial2$correlation)) 

## Correlation 
## Pearson 0.1031247 
## Spearman 0.1148983 
## Polyserial 0.1044407 
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Unweighted Correlations 

The cor.sdf function also features the ability to perform correlations without accounting for weights. The 
cor.sdf function automatically accounts for the default sample weights of the NCES dataset read for analysis 
in weightVar = "default" but can be modifed by setting weightVar=NULL. The following example shows 
the correlation coeÿcients of the Pearson and Spearman methods of the variables pared and b017451 while 
excluding weights: 

cor_pearson_unweighted <- cor.sdf(x = "b017451", y = "pared", data = sdf, 
method = "Pearson", weightVar = NULL) 

cor_pearson_unweighted 

## Method: Pearson 
## full data n: 17606 
## n used: 16278 
## 
## Correlation: 0.05316366 
## 
## Correlation Levels: 
## Levels for Variable 'b017451' (Lowest level first): 
## 1. Never or hardly ever 
## 2. Once every few weeks 
## 3. About once a week 
## 4. 2 or 3 times a week 
## 5. Every day 
## Levels for Variable 'pared' (Lowest level first): 
## 1. Did not finish H.S. 
## 2. Graduated H.S. 
## 3. Some ed after H.S. 
## 4. Graduated college 
## 5. I Don't Know 

cor_spearman_unweighted <- cor.sdf(x = "b017451", y = "pared", data = sdf, 
method = "Spearman", weightVar = NULL) 

cor_spearman_unweighted 

## Method: Spearman 
## full data n: 17606 
## n used: 16278 
## 
## Correlation: 0.04283483 
## 
## Correlation Levels: 
## Levels for Variable 'b017451' (Lowest level first): 
## 1. Never or hardly ever 
## 2. Once every few weeks 
## 3. About once a week 
## 4. 2 or 3 times a week 
## 5. Every day 
## Levels for Variable 'pared' (Lowest level first): 
## 1. Did not finish H.S. 
## 2. Graduated H.S. 
## 3. Some ed after H.S. 
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## 4. Graduated college 
## 5. I Don't Know 

Making a Table with edsurveyTable 

Summary tables can be created in the EdSurvey package using the edsurveyTable function. A call to 
edsurveyTable5 

5Use ?edsurveyTable for details on default edsurveyTable arguments. 

with two variables, dsex and b017451, creates a table that shows the number, percentage, 
and NAEP mathematics performance scale scores of eighth-grade students by gender and frequency of talk 
about studies at home. Percentages add up to 100 within each gender. 

es1 <- edsurveyTable(formula = composite ~ dsex + b017451, data = sdf, 
jrrIMax = 1, varMethod = "jackknife") 

This edsurveyTable is saved as the object es1, and the resulting table can be displayed by printing 

es1$data 

Table 2: es1 

dsex b017451 N WTD_N PCT SE(PCT) MEAN SE(MEAN) 
Male Never or hardly ever 2350 2434.844 29.00978 0.6959418 270.8243 1.057078 
Male 
Male 

Once every few weeks 
About once a week 

1603 
1384 

1638.745 
1423.312 

19.52472 
16.95795 

0.5020657 
0.5057265 

275.0807 
281.5612 

1.305922 
1.409587 

Male 2 or 3 times a week 1535 1563.393 18.62694 0.4811497 284.9066 1.546072 
Male 
Female 

Every day 
Never or hardly ever 

1291 
1487 

1332.890 
1517.609 

15.88062 
18.20203 

0.5872731 
0.5078805 

277.2597 
266.7897 

1.795784 
1.519020 

Female 
Female 

Once every few weeks 
About once a week 

1544 
1469 

1552.149 
1514.403 

18.61630 
18.16358 

0.4892491 
0.5782966 

271.2255 
278.7502 

1.205528 
1.719778 

Female 2 or 3 times a week 1827 1862.502 22.33864 0.4844840 282.7765 1.404107 
Female Every day 1841 1890.918 22.67945 0.6553039 275.4628 1.219439 

Note that we used the argument jrrIMax to indicate the maximum number of plausible values to be included 
when calculating sampling variance in the computation of the standard error of estimates, such as the 
following: 

• Estimated scale scores 
• Achievement levels 
• Regression analysis of student performance using the jackknife variance estimation method 

The default estimation option, jrrIMax=1, uses the sampling variance from the frst plausible value as the 
component for sampling variance in the computation of the standard errors of estimates involving plausible 
values with the jackknife variance estimation method, as seen in the next example. The argument jrrIMax 
can be omitted to select the default. Higher values of jrrIMax leads to longer computing times but more 
accurate error estimates.6 

6See the documentation for lm.sdf for details on the variance calculation. 

An alternative is to set jrrIMax=Inf to obtain the ideal estimation with the 
jackknife method. 
The function also features variance estimation using the Taylor series method. By setting varMethod = 
"Taylor", the same edsurveyTable call used in the previous example can return results using Taylor series 
variance estimation: 
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es1t <- edsurveyTable(formula = composite ~ dsex + b017451, data = sdf, 
jrrIMax = 1, varMethod = "Taylor") 

es1t$data 

Table 3: es1t 

dsex b017451 N WTD_N PCT SE(PCT) MEAN SE(MEAN) 
Male 
Male 

Never or hardly ever 
Once every few weeks 

2350 
1603 

2434.844 
1638.745 

29.00978 
19.52472 

0.6968466 
0.5017827 

270.8243 
275.0807 

1.064411 
1.363576 

Male About once a week 1384 1423.312 16.95795 0.5060344 281.5612 1.417767 
Male 2 or 3 times a week 1535 1563.393 18.62694 0.4810093 284.9066 1.513590 
Male Every day 1291 1332.890 15.88062 0.5866306 277.2597 1.789257 
Female 
Female 

Never or hardly ever 
Once every few weeks 

1487 
1544 

1517.609 
1552.149 

18.20203 
18.61630 

0.5079071 
0.4889362 

266.7897 
271.2255 

1.535320 
1.208797 

Female About once a week 1469 1514.403 18.16358 0.5787277 278.7502 1.739417 
Female 2 or 3 times a week 1827 1862.502 22.33864 0.4846566 282.7765 1.386048 
Female Every day 1841 1890.918 22.67945 0.6554100 275.4628 1.242832 

If the percentages do not add up to 100 at the desired level, an adjustment can be made in the 
pctAggregationLevel argument to change the aggregation level. By default, pctAggregationLevel = 1, 
indicating that the formula will be aggregated by each level the frst variable in the call; in our previous 
example this is dsex. Setting pctAggregationLevel = 0 aggregates by each level of each variable in the 
call: 

es2t <- edsurveyTable(formula = composite ~ dsex + b017451, data = sdf, 
jrrIMax = 1, varMethod = "Taylor", pctAggregationLevel = 0) 

es2t$data 

Table 4: es2t 

dsex b017451 N WTD_N PCT SE(PCT) MEAN SE(MEAN) 
Male Never or hardly ever 2350 2434.844 14.553095 0.3742692 270.8243 1.064411 
Male Once every few weeks 1603 1638.745 9.794803 0.2649185 275.0807 1.363576 
Male About once a week 1384 1423.312 8.507154 0.2771855 281.5612 1.417767 
Male 2 or 3 times a week 1535 1563.393 9.344421 0.2670878 284.9066 1.513590 
Male Every day 1291 1332.890 7.966700 0.2998687 277.2597 1.789257 
Female 
Female 

Never or hardly ever 
Once every few weeks 

1487 
1544 

1517.609 
1552.149 

9.070768 
9.277216 

0.2986897 
0.2498682 

266.7897 
271.2255 

1.535320 
1.208797 

Female About once a week 1469 1514.403 9.051606 0.2902747 278.7502 1.739417 
Female 2 or 3 times a week 1827 1862.502 11.132198 0.2555007 282.7765 1.386048 
Female Every day 1841 1890.918 11.302039 0.3497829 275.4628 1.242832 

The calculation of means and standard errors requires computation time that the user may not want to 
wait for. If you wish to simply see a table of the levels and the N sizes, you can set the returnMeans and 
returnSepct arguments to FALSE to omit those columns as follows: 
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es1b <- edsurveyTable(formula = composite ~ dsex + b017451, data = sdf, jrrIMax = 1, 
returnMeans = FALSE, returnSepct = FALSE) 

In this edsurveyTable, the resulting table can be displayed by printing the object. 

es1b 

Table 5: es1b 

dsex b017451 N WTD_N PCT 
Male 
Male 

Never or hardly ever 
Once every few weeks 

2350 
1603 

2434.844 
1638.745 

29.00978 
19.52472 

Male About once a week 1384 1423.312 16.95795 
Male 2 or 3 times a week 1535 1563.393 18.62694 
Male Every day 1291 1332.890 15.88062 
Female 
Female 

Never or hardly ever 
Once every few weeks 

1487 
1544 

1517.609 
1552.149 

18.20203 
18.61630 

Female About once a week 1469 1514.403 18.16358 
Female 2 or 3 times a week 1827 1862.502 22.33864 
Female Every day 1841 1890.918 22.67945 

For more details on the arguments in the edsurveyTable function, look at the examples using 

?edsurveyTable 

Computing the Percentages of Students With achievementLevels 

The achievementLevels function7 

7Use ?achievementLevels for details on default achievementLevels arguments. 

computes the percentages of students’ achievement levels or bench-
marks defned by an assessment including NAEP,International Association for the Evaluation of Educational 
Achievement (IEA) and Organisation for Economic Co-operation and Development (OECD) international 
studies such as TIMSS and PISA. Take NAEP as an example: each NAEP dataset’s unique set of cutpoints 
for achievement levels (defned as Basic, Profcient, and Advanced) is in the EdSurvey package. They 
can be accessed using the showCutPoints function: 

showCutPoints(data = sdf) 

## Achievement Levels: 
## Basic: 262 
## Proficient: 299 
## Advanced: 333 

The achievementLevels function applies the appropriate weights and variance estimation method for each 
edsurvey.data.frame, with several arguments for customizing the aggregation and output of the analysis 
results. Namely, by using these optional arguments, users can choose to generate the percentage of students 
performing at each achievement level (discrete) and at or above each achievement level (cumulative), cal-
culate the percentage distribution of students by achievement levels (discrete or cumulative) and selected 
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characteristics (specifed in aggregateBy), and compute the percentage distribution of students by selected 
characteristics within a specifc achievement level. 

The achievementLevels function can produce statistics by both discrete and cumulative achievement levels. 
By default, the achievementLevels function produces results only by discrete achievement levels; when the 
returnCumulative argument is set to TRUE, the function generates results by both discrete and cumulative 
achievement levels. 

To compute overall results by achievement levels, use an NCES dataset’s default plausible values in the 
achievementVars argument; in this case, they are the fve or 20 plausible values for the subject composite 
scale. 

aLev0 <- achievementLevels(achievementVars = c("composite"), 
data = sdf, returnCumulative = TRUE) 

aLev0$discrete 

Table 6: aLev0$discrete 

Level N wtdN Percent StandardError 
Below Basic 5731.2 5779.5052 34.132690 0.9744207 
At Basic 6695.6 6580.2181 38.861552 0.7115633 
At Profcient 3666.0 3694.7565 21.820549 0.6342187 
At Advanced 822.2 877.9837 5.185209 0.4007991 

In the next example, the plausible values for composite and the variable dsex are used to calculate the 
achievement levels, which are aggregated by the variable dsex using aggregateBy. 

aLev1 <- achievementLevels(achievementVars = c("composite", "dsex"), aggregateBy = "dsex", 
data = sdf, returnCumulative = TRUE) 

aLev1$discrete 

Table 7: aLev1$discrete 

Level dsex N wtdN Percent StandardError 
Below Basic Male 2880.8 2865.6455 33.666050 1.0951825 
At Basic Male 3266.2 3236.4034 38.021772 0.9537470 
At Profcient Male 1877.2 1910.7861 22.448213 0.7257305 
At Advanced Male 461.8 499.1392 5.863965 0.5081607 
Below Basic Female 2850.4 2913.8597 34.604399 1.1154848 
At Basic Female 3429.4 3343.8146 39.710456 0.8650729 
At Profcient Female 1788.8 1783.9704 21.186066 0.8148916 
At Advanced Female 360.4 378.8444 4.499079 0.3888590 

Note that each level of the dsex variable aggregates to 100 for the results by discrete achievement levels. 
The object aLev1 created in this call to achievementLevels is a list with two data.frames: one for the 
discrete results and the other for the cumulative results. In the previously described code, only the discrete 
levels are shown using aLev1$discrete. To show the cumulative results, change the specifed data.frame. 
For example, 
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aLev1$cumulative 

Table 8: aLev1$cumulative 

Level dsex N wtdN Percent StandardError 
Below Basic 
At or Above Basic 
At or Above Profcient 
At Advanced 
Below Basic 
At or Above Basic 
At or Above Profcient 
At Advanced 

Male 
Male 
Male 
Male 
Female 
Female 
Female 
Female 

2880.8 
5605.2 
2339.0 
461.8 
2850.4 
5578.6 
2149.2 
360.4 

2865.6455 
5646.3287 
2409.9253 
499.1392 
2913.8597 
5506.6295 
2162.8149 
378.8444 

33.666050 
66.333950 
28.312178 
5.863965 
34.604399 
65.395601 
25.685145 
4.499079 

1.0951825 
1.0951825 
0.8635866 
0.5081607 
1.1154848 
1.1154848 
1.0073379 
0.3888590 

The aggregateBy argument sums the percentage of students by discrete achievement level up to 100 at the 
most disaggregated level specifed by the analytical variables and determines the order of aggregation. For 
example, when dsex and iep are used for analysis, aggregateBy = c("dsex", "iep") and aggregateBy 
= c("iep", "dsex") produce the same percentage but arrange the results in di˙erent ways depending on 
the order in the argument. When using aggregateBy = c("iep", "dsex"), the percentages add up to 100 
within each category of dsex for each category of iep, respectively: 

achievementLevels(achievementVars = c("composite", "dsex", "iep"), 
aggregateBy = c("iep", "dsex"), data = sdf) 

## 
## AchievementVars: composite, dsex, iep 
## aggregateBy: iep, dsex 
## 
## Achievement Level Cutpoints: 
## 262 299 333 
## 
## Plausible values: 5 
## jrrIMax: 1 
## Weight variable: 'origwt' 
## Variance method: jackknife 
## JK replicates: 62 
## full data n: 17606 
## n used: 16907 
## 
## 
## Discrete 
## Level iep dsex N wtdN Percent StandardError 
## Below Basic Yes Male 810.2 753.47862 66.4635116 2.0061208 
## At Basic Yes Male 281.6 282.52828 24.9215056 2.0783210 
## At Proficient Yes Male 72.8 85.69544 7.5590995 1.4614600 
## At Advanced Yes Male 9.4 11.97026 1.0558833 0.7673700 
## Below Basic Yes Female 471.2 465.33346 76.4954517 2.9245271 
## At Basic Yes Female 108.8 106.71734 17.5430994 2.0864253 
## At Proficient Yes Female 31.2 34.36986 5.6500084 1.6430596 
## At Advanced Yes Female 2.8 1.89454 0.3114405 0.2601418 
## Below Basic No Male 2067.6 2111.69806 28.6261355 1.0630715 
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## At Basic No Male 2982.6 2952.86086 40.0289211 1.0125447 
## At Proficient No Male 1804.4 1825.09062 24.7408909 0.7840337 
## At Advanced No Male 452.4 487.16896 6.6040524 0.5558956 
## Below Basic No Female 2379.0 2448.49754 31.3451478 1.2051321 
## At Basic No Female 3318.8 3236.55190 41.4336531 0.9207178 
## At Proficient No Female 1757.4 1749.56228 22.3975264 0.8954779 
## At Advanced No Female 356.8 376.79678 4.8236727 0.4233201 

Notice that each unique value pair of the two variables (i.e., Yes + Male or No + Female) sums to 100 
because of aggregateBy. 
NOTE: It is not appropriate to aggregate the results by only one variable when more than one variable 
is used in the analysis. The same variables used in the analysis also need to be used in the argument 
aggregateBy(), but their order can be changed to obtain the desired results. 
The achievementLevels function also can compute the percentage of students by selected characteristics 
within a specifc achievement level. The object aLev2 presents the percentage of students by sex within each 
achievement level (i.e., within each discrete and cumulative level). 

aLev2 <- achievementLevels(achievementVars = c("composite", "dsex"), 
aggregateBy = "composite", 
data = sdf, returnCumulative = TRUE) 

aLev2$discrete 

## Level dsex N wtdN Percent StandardError 
## 1 Below Basic Male 2880.8 2865.6455 49.58289 0.948680 
## 2 Below Basic Female 2850.4 2913.8597 50.41711 0.948680 
## 3 At Basic Male 3266.2 3236.4034 49.18383 0.802051 
## 4 At Basic Female 3429.4 3343.8146 50.81617 0.802051 
## 5 At Proficient Male 1877.2 1910.7861 51.71616 1.191306 
## 6 At Proficient Female 1788.8 1783.9704 48.28384 1.191306 
## 7 At Advanced Male 461.8 499.1392 56.85063 2.007765 
## 8 At Advanced Female 360.4 378.8444 43.14937 2.007765 

aLev2$cumulative 

## Level dsex N wtdN Percent StandardError 
## 1 Below Basic Male 2880.8 2865.6455 49.58289 0.9486800 
## 2 Below Basic Female 2850.4 2913.8597 50.41711 0.9486800 
## 3 At or Above Basic Male 5605.2 5646.3287 50.62629 0.6131938 
## 4 At or Above Basic Female 5578.6 5506.6295 49.37371 0.6131938 
## 5 At or Above Proficient Male 2339.0 2409.9253 52.70200 1.0576380 
## 6 At or Above Proficient Female 2149.2 2162.8149 47.29800 1.0576380 
## 7 At Advanced Male 461.8 499.1392 56.85063 2.0077651 
## 8 At Advanced Female 360.4 378.8444 43.14937 2.0077651 

The percentage of students within a specifc achievement level can be aggregated by one or more variables. 
For example, the percentage of students classifed as English learners (lep) is aggregated by dsex within 
each achievement level: 

aLev3 <- achievementLevels(achievementVars = c("composite", "dsex", "lep"), 
aggregateBy = c("dsex", "composite"), 
data = sdf, returnCumulative = TRUE) 

aLev3$discrete 
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## Level dsex lep N wtdN Percent StandardError 
## 1 Below Basic Male Yes 355.8 436.03778 15.2177175 1.6567089 
## 2 Below Basic Male No 2523.8 2429.29192 84.7822825 1.6567089 
## 3 At Basic Male Yes 138.4 156.75146 4.8455620 0.7683430 
## 4 At Basic Male No 3125.0 3078.19756 95.1544380 0.7683430 
## 5 At Proficient Male Yes 27.6 31.75786 1.6620312 0.5680123 
## 6 At Proficient Male No 1849.6 1879.02820 98.3379688 0.5680123 
## 7 At Advanced Male Yes 1.2 0.75590 0.1514407 0.1793785 
## 8 At Advanced Male No 460.6 498.38332 99.8485593 0.1976283 
## 9 Below Basic Female Yes 334.2 422.06640 14.4853587 1.6957678 
## 10 Below Basic Female No 2515.4 2491.67850 85.5146413 1.6957678 
## 11 At Basic Female Yes 96.4 102.80364 3.0744683 0.7676398 
## 12 At Basic Female No 3332.8 3240.98230 96.9255317 0.7676398 
## 13 At Proficient Female Yes 19.2 22.69640 1.2722408 0.4289834 
## 14 At Proficient Female No 1769.6 1761.27402 98.7277592 0.4289834 
## 15 At Advanced Female Yes 1.2 1.80846 0.4773622 0.7475650 
## 16 At Advanced Female No 359.2 377.03598 99.5226378 0.7919696 

aLev3$cumulative 

## Level dsex lep N wtdN Percent StandardError 
## 1 Below Basic Male Yes 355.8 436.03778 15.2177175 1.6567089 
## 2 Below Basic Male No 2523.8 2429.29192 84.7822825 1.6567089 
## 3 At or Above Basic Male Yes 167.2 189.26522 3.3528686 0.5358275 
## 4 At or Above Basic Male No 5435.2 5455.60908 96.6471314 0.5358275 
## 5 At or Above Proficient Male Yes 28.8 32.51376 1.3491605 0.4574292 
## 6 At or Above Proficient Male No 2310.2 2377.41152 98.6508395 0.4574292 
## 7 At Advanced Male Yes 1.2 0.75590 0.1514407 0.1793785 
## 8 At Advanced Male No 460.6 498.38332 99.8485593 0.1976283 
## 9 Below Basic Female Yes 334.2 422.06640 14.4853587 1.6957678 
## 10 Below Basic Female No 2515.4 2491.67850 85.5146413 1.6957678 
## 11 At or Above Basic Female Yes 116.8 127.30850 2.3119254 0.5208318 
## 12 At or Above Basic Female No 5461.6 5379.29230 97.6880746 0.5208318 
## 13 At or Above Proficient Female Yes 20.4 24.50486 1.1330078 0.4270294 
## 14 At or Above Proficient Female No 2128.8 2138.31000 98.8669922 0.4270294 
## 15 At Advanced Female Yes 1.2 1.80846 0.4773622 0.7475650 
## 16 At Advanced Female No 359.2 377.03598 99.5226378 0.7919696 

Finally, users can set unique cutpoints that override the standard values in the EdSurvey package by using the 
cutpoints argument. In the example that follows, aLev1 uses the standard cutpoints of c(262,299,333) as 
shown in showCutPoints earlier, whereas aLev4 uses cutpoints = c(267,299,333), resulting in a higher 
threshold to reach the Basic category but leaving Profcient and Advanced unchanged: 

aLev4 <- achievementLevels(achievementVars = c("composite", "dsex"), 
aggregateBy = "dsex", 
data = sdf, 
cutpoints = c(267, 299, 333), 
returnCumulative = TRUE) 

aLev4$discrete 

## Level dsex N wtdN Percent StandardError 
## 1 Below Level 1 Male 3285.0 3262.6418 38.330025 1.2149501 
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## 2 At Level 1 Male 2862.0 2839.4071 33.357798 0.9636501 
## 3 At Level 2 Male 1877.2 1910.7861 22.448213 0.7257305 
## 4 At Level 3 Male 461.8 499.1392 5.863965 0.5081607 
## 5 Below Level 1 Female 3284.8 3324.5956 39.482215 1.1460243 
## 6 At Level 1 Female 2995.0 2933.0787 34.832640 0.7304983 
## 7 At Level 2 Female 1788.8 1783.9704 21.186066 0.8148916 
## 8 At Level 3 Female 360.4 378.8444 4.499079 0.3888590 

aLev1$discrete 

## Level dsex N wtdN Percent StandardError 
## 1 Below Basic Male 2880.8 2865.6455 33.666050 1.0951825 
## 2 At Basic Male 3266.2 3236.4034 38.021772 0.9537470 
## 3 At Proficient Male 1877.2 1910.7861 22.448213 0.7257305 
## 4 At Advanced Male 461.8 499.1392 5.863965 0.5081607 
## 5 Below Basic Female 2850.4 2913.8597 34.604399 1.1154848 
## 6 At Basic Female 3429.4 3343.8146 39.710456 0.8650729 
## 7 At Proficient Female 1788.8 1783.9704 21.186066 0.8148916 
## 8 At Advanced Female 360.4 378.8444 4.499079 0.3888590 

Changing the cutpoint for a particular achievement level will result in di˙erent distributions of student 
achievement. Notice that labels for the levels based on user-defned cutpoints are distinct from those based 
on NAEP-defned cutpoints; instead, labels are based on the range of values in the cutpoints argument. 

Calculating Percentiles With percentile 

The percentile function compares a numeric vector of percentiles in the range 0 to 100 for a data year. For 
example, to compare the NAEP Primer’s subject composite scale at the 10th, 25th, 50th, 75th, and 90th 
percentiles, include these as integers in the percentiles argument: 

pct1 <- percentile(variable = "composite", percentiles = c(10, 25, 50, 75, 90), data = sdf) 
pct1 

## Percentile 
## Call: percentile(variable = "composite", percentiles = c(10, 25, 50, 
## 75, 90), data = sdf) 
## full data n: 17606 
## n used: 16915 
## 
## percentile estimate se df confInt.ci_lower confInt.ci_upper nsmall 
## 10 227.7205 1.0555662 14.13296 225.2553 229.9806 1635.4 
## 25 251.9623 1.0171720 15.15107 249.7341 253.9892 4189.8 
## 50 277.4784 1.1374141 18.21071 275.7172 279.1877 8417.0 
## 75 301.1835 0.9132983 25.17313 299.4246 302.8996 4138.2 
## 90 321.9306 0.9035171 21.85127 319.9356 324.0352 1596.0 

Preparing an edsurvey.data.frame.list 

Whereas most functions in the EdSurvey package involve analyses using one dataset, an edsurvey.data.frame.list 
appends edsurvey.data.frame objects into one list for analysis. For example, four NAEP mathematics 
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assessments from di˙erent years can be combined into an edsurvey.data.frame.list to make a single 
call to analysis functions for ease of use in comparing, formatting, and/or plotting output data. Data 
from various countries in an international study can be integrated into an edsurvey.data.frame.list for 
further analysis. 

To prepare an edsurvey.data.frame.list for gap analysis, it is necessary to ensure that variable informa-
tion is consistent across each edsurvey.data.frame. When comparing groups across data years, it is not 
uncommon for variable names and labels to change. For example, some data years feature a split-sample 
design based on accommodations status, thereby containing di˙erences in frequently used demographic vari-
ables between samples as well as across data years. Two useful functions in determining these inconsistencies 
are searchSDF() and levelsSDF(), which return variable names, labels, and levels based on a character 
string. 

Recoding Variable Names and Levels Using recode.sdf and rename.sdf 

To assist in the process of standardizing data for edsurvey.data.frames, light.edsurvey.data.frames, 
and edsurvey.data.frame.lists, the functions recode.sdf() and rename.sdf() are particularly handy. 

Similar to the recode argument from the cor.sdf() section earlier in this vignette (and featured in many 
other functions), recode.sdf() accepts the levels of a variable as a vector from their current values to 
their new recoded value. For example, changing the lowest level of b017451 from "Never or hardly ever" 
to "Infrequently" and the highest level from "Every day" to "Frequently", will recode levels for that 
variable in our connection to sdf: 

sdf2 <- recode.sdf(sdf, 
recode=list(b017451=list(from=c("Never or hardly ever"), 

to=c("Infrequently")), 
b017451=list(from=c("Every day"), 

to=c("Frequently")) 
) 

) 
searchSDF("b017451", sdf2, levels = TRUE) 

## Variable: b017451 
## Label: Talk about studies at home 
## Levels (Lowest level first): 
## 2. Once every few weeks 
## 3. About once a week 
## 4. 2 or 3 times a week 
## 8. Omitted 
## 0. Multiple 
## 9. Infrequently 
## 10. Frequently 

In addition, we can change the name of variables using rename.sdf(). The recoded variable "b017451" can 
be changed to a value that more e˙ectively describes its contents, such as "studyTalkFrequency": 

sdf2 <- rename.sdf(sdf2, "b017451", "studytalkfrequency") 
searchSDF("studytalkfrequency", sdf2, levels = TRUE) 

## Variable: studytalkfrequency 
## Label: Talk about studies at home 
## Levels (Lowest level first): 
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## 2. Once every few weeks 
## 3. About once a week 
## 4. 2 or 3 times a week 
## 8. Omitted 
## 0. Multiple 
## 9. Infrequently 
## 10. Frequently 

NOTE: The functions rename.sdf() and recode.sdf() do not permanently overwrite the variable infor-
mation from your data source; they recode it only for the current connection to the data in R. The original 
fle formatting can be retrieved by reconnecting to the data source via readNAEP(). 

Combining Several edsurvey.data.frame Objects Into a Single Object 

Once variables between each edsurvey.data.frame have been standardized, they are combined into an 
edsurvey.data.frame.list and are ready for analysis. In the following example, sdf is subset into four 
datasets, appended into an edsurvey.data.frame.list, and assigned unique labels: 

# make four subsets of sdf by scrpsu, "Scrambled PSU and school code" 
sdfA <- subset(sdf, scrpsu %in% c(5, 45, 56)) 
sdfB <- subset(sdf, scrpsu %in% c(75, 76, 78)) 
sdfC <- subset(sdf, scrpsu %in% 100:200) 
sdfD <- subset(sdf, scrpsu %in% 201:300) 
sdfl <- edsurvey.data.frame.list(datalist = list(sdfA, sdfB, sdfC, sdfD), 

labels = c("A locations","B locations", 
"C locations","D locations")) 

This edsurvey.data.frame.list can now be analyzed in other EdSurvey functions. 

Recommended Workfow for Standardizing Variables in Trend Analyses 

Although the EdSurvey package features several methods to resolve inconsistencies across edsurvey.data.frames, 
the following approach is recommended: 

1. Connect to each dataset using a read function such as readNAEP(). 
2. Recode each discrepant variable name and level using recode.sdf() and rename.sdf(). 
3. Combine datasets into one edsurvey.data.frame.list object. 
4. Analyze trends using the edsurvey.data.frame.list object. 

NOTE: It also is possible to retrieve and recode variables with the getData function; further details and 
examples of this method are discussed in the vignette titled Using the getData Function in EdSurvey. 

Estimating the Di˙erence in Two Statistics With gap 

Gap analysis is a methodology that estimates the di˙erence between two statistics (e.g., mean scores, achieve-
ment level percentages, percentiles, and student group percentages) for two groups in a population. A gap 
occurs when one group outperforms the other group, wherein the di˙erence between the two statistics is 
statistically signifcant (i.e., the di˙erence is larger than the margin of error). 
In NAEP, the gap analysis can be comparisons between groups (e.g., male students vs. female students) by 
or across years, between jurisdictions (e.g., two states, district vs. home state, state vs. national public) by or 
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across years, or comparisons of the same group between years (e.g., male students in 2015 vs. male students 
in 2003). Independent tests with an alpha level of .05 are performed for most of these types of comparisons. 
For comparison between jurisdictions, a dependent test is used for the case in which one jurisdiction is 
contained in another (e.g., state vs. national public). 

Note that NAEP typically tests two statistics (e.g., two groups or two years) at a time; if you want to test 
more than that, multiple comparison procedures should be applied, and your results will be more conservative 
than NAEP’s reported results. For more information on gap analysis and multiple comparison, see Drawing 
Inferences From NAEP Results. 

Performing Gap Analysis and Understanding the Summary Output 

The following code uses an unexported function copyDataToTemp that generates fake data for use in examples. 

set.seed(42) 
year1 <- EdSurvey:::copyDataToTemp(f0 = "M32NT2PM") 
year2 <- EdSurvey:::copyDataToTemp(f0 = "M40NT2PM") 

The gap analysis function can perform comparisons between groups by or across years, of the same group 
between years, or of comparisons of the gaps between groups across years. The following example demon-
strates the gap function, comparing the di˙erence between the dsex variables using dummy datasets—year1 
and year2—appended into an edsurvey.data.frame.list: 

mathList <- edsurvey.data.frame.list(datalist = list(year1, year2), 
labels = c("math year1", "math year2")) 

mathGap <- gap(variable = "composite", data = mathList, 
groupA = dsex == "Male", groupB = dsex == "Female") 

Each gap output contains a data.frame detailing the results of the analyses, which are returned using the 
following: 

mathGap$results 

## labels estimateA estimateAse estimateB estimateBse diffAB covAB 
## 1 math year1 277.2735 1.014495 274.9149 1.040229 2.358576 0.3694072 
## 2 math year2 276.8393 1.056766 274.3754 1.114861 2.463876 0.7071580 
## diffABse diffABpValue dofAB diffAA covAA diffAAse diffAApValue dofAA 
## 1 1.1715210 0.05398869 27.44776 NA NA NA NA NA 
## 2 0.9722933 0.01338217 74.24251 0.4342073 0 1.464908 0.7678634 65.12246 
## diffBB covBB diffBBse diffBBpValue dofBB diffABAB covABAB diffABABse 
## 1 NA NA NA NA NA NA NA NA 
## 2 0.5395077 0 1.524792 0.7241024 117.9997 -0.1053004 0 1.522437 
## diffABABpValue dofABAB sameSurvey 
## 1 NA NA NA 
## 2 0.945065 66.60037 FALSE 

When the data argument is an edsurvey.data.frame.list, the summary results include the following 
information: 

• the covariates and their respective means (estimateA/estimateB) and standard errors (estimateAse/estimateBse) 
across a variable (typically data years) 
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• the di˙erence between the values of estimateA and estimateB, as well as its respective standard errors 
and p-value (each starting with diffAB) 

• the di˙erence between the values of estimateA across a variable compared with the reference dataset, 
as well as its respective standard errors and p-value (each starting with diffAA) 

• the di˙erence within the values of estimateB across a variable compared with the reference dataset, 
as well as its respective standard errors and p-value (each starting with diffBB) 

• the di˙erence between the di˙erence of estimateA and estimateB across a variable compared with the 
reference dataset, as well as its respective standard errors and p-value (each starting with diffABAB) 

• the value sameSurvey, which indicates if a line in the data output uses the same survey as the reference 
line (a logical: TRUE/FALSE) 

For example, in mathGap$results: 

• The gap in mean mathematics scores between the dsex variables in year 1 (diffAB) is 2.2009456. 
• The gap in mean mathematics scores within the dsex variables across data years where groupA = 

"Male" (diffAA) is 0.6268042. 
• The gap in mean mathematics scores within the dsex variables across data years where groupB = 

"Female" (diffBB) is -0.7962217. 
• The gap in mean mathematics scores between the dsex variables across data years (diffABAB) is 

1.423026. 

In addition to the summary results, the gap output also contains a data.frame of percentage gaps, in a 
format matching the previous results data.frame. This is returned by using the following: 

mathGap$percentage 

## labels pctA pctAse pctB pctBse diffAB covAB diffABse 
## 1 math year1 50.31267 0.7732424 49.68733 0.7732424 0.6253492 -0.5979038 1.546485 
## 2 math year2 51.04887 0.7316137 48.95113 0.7316137 2.0977415 -0.5352586 1.463227 
## diffABpValue dofAB diffAA covAA diffAAse diffAApValue dofAA diffBB 
## 1 0.6884604 34.19288 NA NA NA NA NA NA 
## 2 0.1569309 59.25477 -0.7361961 0 1.064501 0.4911036 83.97934 0.7361961 
## covBB diffBBse diffBBpValue dofBB diffABAB covABAB diffABABse diffABABpValue 
## 1 NA NA NA NA NA NA NA NA 
## 2 0 1.064501 0.4911036 83.97934 -1.472392 0 2.129002 0.4911036 
## dofABAB 
## 1 NA 
## 2 83.97934 

Gap Analysis of Achievement Levels and Percentiles 

Gap analysis also may be performed across achievement levels and percentiles by specifying the 
values in the achievementLevel or percentiles arguments, respectively. Using our previous 
edsurvey.data.frame.list object (mathList), setting achievementLevel=c("Basic", "Proficient", 
"Advanced") will perform comparisons between groups by and across years for each achievement level value. 

mathALGap <- gap(variable = "composite", data = mathList, 
groupA = dsex == "Male", groupB = dsex == "Female", 
achievementLevel = c("Basic", "Proficient", "Advanced")) 

mathALGap$results 
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## achievementLevel labels estimateA estimateAse estimateB estimateBse 
## 1 At or Above Basic math year1 66.870662 1.2335219 65.100350 1.3290706 
## 2 At or Above Basic math year2 66.008354 1.4761274 64.212592 1.2702205 
## 3 At or Above Proficient math year1 28.719053 1.2778962 25.546317 1.1150117 
## 4 At or Above Proficient math year2 28.469990 1.0605786 25.852175 1.2256185 
## 5 At Advanced math year1 6.111211 0.6868165 4.509459 0.5578078 
## 6 At Advanced math year2 5.833023 0.7136854 4.353453 0.4823550 
## diffAB covAB diffABse diffABpValue dofAB diffAA covAA diffAAse 
## 1 1.770311 0.47346693 1.5300559 0.25305547 47.43947 NA NA NA 
## 2 1.795762 0.80498819 1.4773070 0.22899798 58.93240 0.8623073 0 1.9236757 
## 3 3.172735 0.16683642 1.5945522 0.05430082 35.80025 NA NA NA 
## 4 2.617815 0.63726122 1.1629469 0.02759747 68.48216 0.2490623 0 1.6606763 
## 5 1.601751 0.09886164 0.7649465 0.04228707 42.36482 NA NA NA 
## 6 1.479570 0.11276154 0.7186725 0.04512671 46.64694 0.2781884 0 0.9904867 
## diffAApValue dofAA diffBB covBB diffBBse diffBBpValue dofBB 
## 1 NA NA NA NA NA NA NA 
## 2 0.6559148 49.66853 0.8877581 0 1.8384474 0.6302057 102.66886 
## 3 NA NA NA NA NA NA NA 
## 4 0.8810447 115.55769 -0.3058583 0 1.6569224 0.8538879 109.77788 
## 5 NA NA NA NA NA NA NA 
## 6 0.7795513 79.05949 0.1560067 0 0.7374387 0.8331024 66.60928 
## diffABAB covABAB diffABABse diffABABpValue dofABAB sameSurvey 
## 1 NA NA NA NA NA NA 
## 2 -0.02545076 0 2.126854 0.9904753 104.21223 FALSE 
## 3 NA NA NA NA NA NA 
## 4 0.55492055 0 1.973586 0.7793705 73.18939 FALSE 
## 5 NA NA NA NA NA NA 
## 6 0.12218164 0 1.049587 0.9075937 87.93697 FALSE 

Similarly, setting percentiles = c(10, 25, 50, 75, 90) will perform comparisons between groups by 
and across years for each percentile value. 

mathPercentilesGap <- gap(variable = "composite", data = mathList, 
groupA = dsex == "Male", groupB = dsex == "Female", 
percentiles = c(10, 25, 50, 75, 90)) 

mathPercentilesGap$results 

## percentiles labels estimateA estimateAse estimateB estimateBse diffAB 
## 1 10 math year1 228.5492 0.9667854 227.0247 2.2177507 1.524483 
## 2 10 math year2 227.9186 2.4995864 226.2819 2.2006815 1.636691 
## 3 25 math year1 253.0893 0.9471983 250.9874 1.5062090 2.101920 
## 4 25 math year2 252.2491 1.3755823 250.0428 1.3677150 2.206282 
## 5 50 math year1 278.2843 1.3730106 276.9812 0.9264616 1.303117 
## 6 50 math year2 278.0656 1.6903894 276.3454 1.3722702 1.720201 
## 7 75 math year1 302.8779 1.3682276 299.6181 1.1878050 3.259775 
## 8 75 math year2 302.7776 0.8726368 299.9592 1.0668784 2.818378 
## 9 90 math year1 324.2191 1.7859545 320.1731 1.2427261 4.046013 
## 10 90 math year2 324.3229 1.8148749 319.6371 1.3593064 4.685793 
## covAB diffABse diffABpValue dofAB diffAA covAA diffAAse diffAApValue 
## 1 0.12874954 2.365501 0.524380292 28.76492 NA NA NA NA 
## 2 1.59047562 2.812469 0.567514040 18.81623 0.6305664 0 2.680038 0.8155427 
## 3 0.06906226 1.740036 0.231540228 63.44991 NA NA NA NA 
## 4 0.05717917 1.910108 0.253858464 47.38973 0.8401989 0 1.670153 0.6168345 
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## 5 0.14110321 1.568848 0.411462617 37.37699 NA NA NA NA 
## 6 1.27774827 1.478190 0.250443398 46.73963 0.2186734 0 2.177745 0.9203339 
## 7 0.07671289 1.769040 0.073719644 35.58427 NA NA NA NA 
## 8 0.39727222 1.051275 0.009435823 60.84149 0.1002895 0 1.622819 0.9508935 
## 9 0.13587502 2.112404 0.075499842 14.41527 NA NA NA NA 
## 10 0.47512103 2.047252 0.026239504 51.30331 -0.1038355 0 2.546253 0.9676270 
## dofAA diffBB covBB diffBBse diffBBpValue dofBB diffABAB covABAB 
## 1 NA NA NA NA NA NA NA NA 
## 2 30.88172 0.7427746 0 3.124327 0.8129968 53.19276 -0.1122082 0 
## 3 NA NA NA NA NA NA NA NA 
## 4 57.62887 0.9445612 0 2.034529 0.6434062 106.40957 -0.1043623 0 
## 5 NA NA NA NA NA NA NA NA 
## 6 63.31403 0.6357575 0 1.655735 0.7024377 56.57640 -0.4170841 0 
## 7 NA NA NA NA NA NA NA NA 
## 8 72.08366 -0.3411076 0 1.596593 0.8316963 49.70196 0.4413971 0 
## 9 NA NA NA NA NA NA NA NA 
## 10 52.23293 0.5359443 0 1.841761 0.7717175 90.91000 -0.6397798 0 
## diffABABse diffABABpValue dofABAB sameSurvey 
## 1 NA NA NA NA 
## 2 3.674993 0.9757890 41.32595 FALSE 
## 3 NA NA NA NA 
## 4 2.583842 0.9678588 104.78313 FALSE 
## 5 NA NA NA NA 
## 6 2.155534 0.8470519 81.70437 FALSE 
## 7 NA NA NA NA 
## 8 2.057834 0.8308790 60.72581 FALSE 
## 9 NA NA NA NA 
## 10 2.941682 0.8288465 43.44324 FALSE 

Gap Analysis of Jurisdictions 

Comparisons of district, state, and national jurisdictions also can be performed using the gap function. The 
NAEPprimer data package does not contain jurisdiction level variables, such as fips; therefore, examples 
cannot be shown in this vignette; instead, the following code scripts are to be used as a reference: 

# comparisons of two states 
mathStateGap <- gap(variable = "composite", data = mathList, 

fips == "California", fips == "Virginia") 

# comparisons of state to all public schools in nation 
mathList <- subset(mathList, schtyp2 == "Public") 
mathStateNationGap <- gap(variable = "composite", data = mathList, 

fips == "California", schtyp2 == "Public") 

# comparisons of district to state 
mathStateDistrictGap <- gap("composite", data = mathList, 

distcod == "Los Angeles", fips == "California") 

Regression Analysis With lm.sdf 

After the data are read in with the EdSurvey package, a linear model can be ft to fully account for the 
complex sample design used for an NCES data by using lm.sdf. 
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The option jrrIMax is omitted in the following example; therefore, the default jackknife variance estimator 
is used. Also, an explicit weight variable is not set, so the lm.sdf function uses a default weight for the full 
sample in the analysis. For instance, origwt is the default weight in NAEP. 

The data are read in and analyzed by the lm.sdf function—in this case, dsex, b017451, the fve plausible 
values for composite, and the full sample weight origwt. By default, variance is estimated using the 
jackknife method, so the following call reads in the jackknife replicate weights:8 

8Use ?lm.sdf for details on default lm.sdf arguments. 

lm1 <- lm.sdf(formula = composite ~ dsex + b017451, data = sdf) 
summary(lm1) 

## 
## Formula: composite ~ dsex + b017451 
## 
## Weight variable: 'origwt' 
## Variance method: jackknife 
## JK replicates: 62 
## Plausible values: 5 
## jrrIMax: 1 
## full data n: 17606 
## n used: 16331 
## 
## Coefficients: 
## coef se t dof Pr(>|t|) 
## (Intercept) 270.41112 1.02443 263.9615 54.670 < 2.2e-16 *** 
## dsexFemale -2.95858 0.60423 -4.8965 54.991 8.947e-06 *** 
## b017451Once every few weeks 4.23341 1.18327 3.5777 57.316 0.0007131 *** 
## b017451About once a week 11.22612 1.25854 8.9200 54.683 2.983e-12 *** 
## b0174512 or 3 times a week 14.94591 1.18665 12.5951 72.582 < 2.2e-16 *** 
## b017451Every day 7.52998 1.30846 5.7549 48.470 5.755e-07 *** 
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
## 
## Multiple R-squared: 0.0224 

After the regression is run, the data are automatically removed from memory. By default, lm.sdf uses 
“treatment contrasts,” where one level is dropped from the regression. This cannot be changed, but the 
omitted and comparison groups can be changed with the relevels argument. In the following example, 
“Female” is omitted from the analysis for the variable dsex: 

lm1f <- lm.sdf(formula = composite ~ dsex + b017451, data = sdf, 
relevels = list(dsex = "Female")) 

summary(lm1f) 

## 
## Formula: composite ~ dsex + b017451 
## 
## Weight variable: 'origwt' 
## Variance method: jackknife 
## JK replicates: 62 
## Plausible values: 5 
## jrrIMax: 1 
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## full data n: 17606 
## n used: 16331 
## 
## Coefficients: 
## coef 
## (Intercept) 267.45254 
## dsexMale 2.95858 
## b017451Once every few weeks 4.23341 
## b017451About once a week 11.22612 
## b0174512 or 3 times a week 14.94591 
## b017451Every day 7.52998 
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 
## 
## Multiple R-squared: 0.0224 

se t dof Pr(>|t|) 
1.13187 236.2919 76.454 < 2.2e-16 *** 
0.60423 4.8965 54.991 8.947e-06 *** 
1.18327 3.5777 57.316 0.0007131 *** 
1.25854 8.9200 54.683 2.983e-12 *** 
1.18665 12.5951 72.582 < 2.2e-16 *** 
1.30846 5.7549 48.470 5.755e-07 *** 

'*' 0.05 '.' 0.1 ' ' 1 

Note that the coeÿcient on dsex changed from negative in the previous run to positive of the exact same 
magnitude, whereas none of the other coeÿcients (aside from the intercept) changed; this is the expected 
result. The change results from the switch of the reference gender from “Male” in the frst regression model 
to “Female” in the second regression model. The lm.sdf function features variance estimation using both the 
jackknife and Taylor series variance estimation methods by setting the varMethod argument to the desired 
technique. 

The standardized regression coeÿcient also can be returned by adding src 
to your regression model object: 

summary(lm1f, src=TRUE) 

## 
## Formula: composite ~ dsex + b017451 
## 
## Weight variable: 'origwt' 
## Variance method: jackknife 
## JK replicates: 62 
## Plausible values: 5 
## jrrIMax: 1 
## full data n: 17606 
## n used: 16331 
## 
## Coefficients: 
## coef se t 

= TRUE into the summary call 

dof Pr(>|t|) stdCoef 
## (Intercept) 2.6745e+02 1.1319e+00 236.2919 76.454 0.0000e+00 NA 
## dsexMale 2.9586e+00 6.0423e-01 4.8965 54.991 8.9474e-06 0.0407 
## b017451Once every few weeks 4.2334e+00 1.1833e+00 3.5777 57.316 7.1311e-04 0.0458 
## b017451About once a week 
## b0174512 or 3 times a week 
## b017451Every day 
## 
## (Intercept) 
## dsexMale 

1.1226e+01 1.2585e+00 8.9200 54.683 2.9834e-12 0.1175 
1.4946e+01 1.1866e+00 12.5951 72.582 0.0000e+00 0.1659 
7.5300e+00 1.3085e+00 5.7549 48.470 5.7550e-07 0.0817 

stdSE 
NA 

0.008313 ** 
## b017451Once every few weeks 0.012791 * 
## b017451About once a week 0.013175 * 
## b0174512 or 3 times a week 0.013175 * 
## b017451Every day 0.014200 * 
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## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
## 
## Multiple R-squared: 0.0224 

By default, the standardized coeÿcients are calculated using standard deviations of the vari-
ables themselves, including averaging the standard deviation across any plausible values. When 
standardizeWithSamplingVar is set to TRUE, the variance of the standardized coeÿcient is calculated 
similar to a regression coeÿcient and therefore includes the sampling variance in the variance estimate of 
the outcome variable. 

Multivariate Regression With mvrlm.sdf 

A multivariate regression model can be ft to fully account for the complex sample design used for NCES 
data by using mvrlm.sdf. This function implements an estimator that correctly handles multiple dependent 
variables that are numeric (such as plausible values), which allows for variance estimation using the jackknife 
replication method. 

The vertical line symbol | separates dependent variables on the left-hand side of formula. In the following 
example, a multivariate regression is ft with two subject scales as the outcome variables (algebra and 
geometry) by two predictor variables signifying gender and a survey item concerning the ability to identify 
the best unit of area (dsex and m072801): 

mvrlm1 <- mvrlm.sdf(algebra | geometry ~ dsex + m072801, data = sdf) 
summary(mvrlm1) 

## 
## Formula: algebra | geometry ~ dsex + m072801 
## 
## jrrIMax: 
## Weight variable: 'origwt' 
## Variance method: 
## JK replicates: 62 
## full data n: 17606 
## n used: 3287 
## 
## Coefficients: 
## 
## algebra 
## coef se t dof Pr(>|t|) 
## (Intercept) 258.32980 2.38447 108.33839 42.729 < 2.2e-16 *** 
## dsexFemale 6.94298 1.51265 4.58995 49.897 3.021e-05 *** 
## m072801B * 24.78260 2.23171 11.10475 67.935 < 2.2e-16 *** 
## m072801C 11.75561 2.97489 3.95162 64.737 0.0001945 *** 
## m072801D -12.88466 6.55887 -1.96446 12.131 0.0728026 . 
## m072801E 1.96793 5.38314 0.36557 21.275 0.7182938 
## m072801Not Reached -33.52297 17.46008 -1.91998 10.968 0.0812328 . 
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
## 
## geometry 
## coef se t dof Pr(>|t|) 
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## (Intercept) 255.351767 2.368025 107.833211 33.7224 < 2.2e-16 *** 
## dsexFemale 5.407780 1.584977 3.411898 35.8676 0.001613 ** 
## m072801B * 22.369806 2.212790 10.109321 57.1693 2.442e-14 *** 
## m072801C 8.850143 3.647400 2.426425 51.3747 0.018796 * 
## m072801D -9.260011 5.873402 -1.576601 12.8849 0.139113 
## m072801E -0.185649 5.919666 -0.031361 23.9251 0.975242 
## m072801Not Reached -31.782791 23.915420 -1.328966 5.1159 0.240046 
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
## 
## Residual correlation matrix: 
## 
## algebra geometry 
## algebra 1.00 0.85 
## geometry 0.85 1.00 
## 
## Multiple R-squared by dependent variable: 
## 
## algebra geometry 
## 0.0926 0.0858 

The mvrlm.sdf documentation provides examples to compare the regression outputs. See ?mvrlm.sdf for an 
overview of additional details that can be accessed through components of the returned object. In addition, 
the vignette titled Statistical Methods Used in EdSurvey goes into further detail by describing estimation of 
the reported statistics. 

Logistic Regression Analysis With glm.sdf, logit.sdf, and 
probit.sdf 

A logistic regression model can be ft to fully account for the complex sample design used for NCES data 
by using glm.sdf, logit.sdf, and probit.sdf. These functions predict binary outcomes from a set of 
predictor variables factoring in appropriate weights and variance estimates. 

Although some variables might already be binary, the function I() can be used to specify the desired outcome 
level for a nonbinary variable. A logistic regression can be run exploring the impact of gender (dsex) on the 
number of books at home (b013801) with the level matching ">100" as the outcome level: 

logit1 <- logit.sdf(I(b013801 %in% ">100") ~ dsex, 
weightVar = 'origwt', data = sdf) 

summary(logit1) 

## 
## Formula: b013801 ~ dsex 
## Family: binomial (logit) 
## 
## Weight variable: 'origwt' 
## Variance method: jackknife 
## JK replicates: 62 
## full data n: 17606 
## n used: 16359 
## 
## Coefficients: 
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## coef se t dof Pr(>|t|) 
## (Intercept) -0.920421 0.046355 -19.855835 60.636 < 2.2e-16 *** 
## dsexFemale 0.178274 0.050129 3.556331 54.578 0.0007863 *** 
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 

The log odds of having more than 100 books at home (versus less than or equal to 100 books) increases by 
0.178274 for female students compared with male students. 
Logistic regression results can be further interpreted with the assistance of the oddsRatio and waldTest 
functions. 

oddsRatio 

The oddsRatio helper function allows for the conversion of coeÿcients from an EdSurvey logit regression 
model to odds ratios. Odds ratios are useful for understanding the real likelihood of an event occurring 
based on a transformation to the log odds returned in a logistic model. 
In EdSurvey, odds ratios can be returned by specifying the logistic model object (logit1) 

oddsRatio(logit1) 

## OR 2.5% 97.5% 
## (Intercept) 0.3983511 0.3621585 0.4345438 
## dsexFemale 1.1951531 1.0777266 1.3125797 

The odds of having more than 100 books at home (versus less than or equal to 100 books) increases by 
1.1951531 for female students compared with male students. 

waldTest 

The waldTest function allows the user to test composite hypotheses—hypotheses with multiple coeÿcients 
involved—even when the data include plausible values. Because there is no likelihood test for plausible values 
or residuals, the Wald test flls the role of the likelihood ratio test, ANOVA, and F-test. 
Wald tests can be run by specifying the model and coeÿcients. The 2nd coeÿcient in our logit1 model 
object (Female) is tested in the following example: 

waldTest(model = logit1, coefficients = 2) 

## Wald test: 
## ----------
## H0: 
## dsexFemale = 0 
## 
## Chi-square test: 
## X2 = 12.6, df = 1, P(> X2) = 0.00038 
## 
## F test: 
## W = 12.6, df1 = 1, df2 = 62, P(> W) = 0.00073 

To learn more about conducting Wald tests, consult the vignette titled Methods and Overview of Using 
EdSurvey for Running Wald Tests at the AIR website. 
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Quantile Regression Analysis with rq.sdf 

The rq.sdf function computes an estimate on the tau-th conditional quantile function of the response, 
given the covariates, as specifed by the formula argument. Similar to lm.sdf, the function presumes a 
linear specifcation for the quantile regression model (i.e., the formula defnes a model that is linear in 
parameters). Note that Jackknife is the only applicable variance estimation method used by the function. 

To conduct quantile regression at a given tau value (by default, tau is set as 0.5), specify using the tau 
argument (in this example tau = 0.8); all other arguments are otherwise consistent with lm.sdf, except for 
returnVarEstInputs, returnNumberOfPSU, and standardizeWithSamplingVar, which are not available. 

rq1 <- rq.sdf(composite ~ dsex + b017451, data=sdf, tau = 0.8) 
summary(rq1) 

## 
## Formula: composite ~ dsex + b017451 
## 
## tau: 0.8 
## jrrIMax: 1 
## Weight variable: 'origwt' 
## Variance method: jackknife 
## JK replicates: 62 
## full data n: 17606 
## n used: 16331 
## 
## Coefficients: 
## coef se t dof Pr(>|t|) 
## (Intercept) 299.7680 1.8103 165.5883 29.389 < 2.2e-16 *** 
## dsexFemale -4.6280 1.2908 -3.5852 58.617 0.0006868 *** 
## b017451Once every few weeks 6.5880 1.9086 3.4518 46.045 0.0012041 ** 
## b017451About once a week 12.4800 2.2959 5.4359 67.782 8.032e-07 *** 
## b0174512 or 3 times a week 16.5420 2.4616 6.7201 29.867 1.943e-07 *** 
## b017451Every day 12.7420 1.6932 7.5253 50.343 8.717e-10 *** 
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 

For further details on quantile regression models and how they are implemented in R, see the vignette 
from the quantreg package (accessible by vignette("rq", package="quantreg")), on which the rq.sdf 
function is built. 

Mixed Models With mixed.sdf 

The EdSurvey package features the functionality of estimating mixed-e˙ects models accounting for plausible 
values and survey weights. The EdSurvey package fts a weighted mixed model, also known as a weighted 
multilevel or hierarchical linear model using the WeMix package. 

This example illustrates how the user might implement the student-level weighting when using a survey 
(NAEP in this example) that does not have a weighting scheme previously implemented. 

# Subset data to a sample of interest 
sdf2 <- subset(sdf, scrpsu < 500) 

38 



are conditional, consider setting "cWeights=TRUE".

# Extract variables of interest to a light.edsurvey.data.frame 
lsdf <- getData(sdf2, c("composite","dsex","b017451","scrpsu","origwt","smsrswt"), 

addAttributes=TRUE) 

# Transform weights using your method (Note that this method is not recommended for NAEP) 
lsdf$pwt1 <- lsdf$origwt/lsdf$smsrswt 
lsdf$pwt2 <- lsdf$smsrswt 

m1 <- mixed.sdf(composite ~ dsex + b017451 + (1|scrpsu), data=lsdf, 
weightVar = c('pwt1', 'pwt2')) 

## Some weights are larger at higher levels. This could be the result of scaling. However, if the weights 

summary(m1) 

## Call: 
## mixed.sdf(formula = composite ~ dsex + b017451 + (1 | scrpsu), 
## data = lsdf, weightVars = c("pwt1", "pwt2")) 
## 
## Formula: composite ~ dsex + b017451 + (1 | scrpsu) 
## 
## Plausible Values: 5 
## Number of Groups: 
## Group Var Observations Level 
## 1 scrpsu 22 2 
## 2 Residual 492 1 
## 
## Variance terms: 
## variance Std. Error Std.Dev. 
## scrpsu.(Intercept) 558.6111 221.73775 23.63495 
## Residual 876.7564 92.42563 29.61007 
## 
## Fixed Effects: 
## Estimate Std. Error t value 
## (Intercept) 266.7950 8.1996 32.5374 
## dsexFemale -1.1788 2.9982 -0.3932 
## b017451Once every few weeks 2.1730 6.9541 0.3125 
## b017451About once a week 9.8088 4.4724 2.1932 
## b0174512 or 3 times a week 10.8633 6.0979 1.7815 
## b017451Every day 6.7917 7.3655 0.9221 
## 
## Intraclass Correlation= 0.389 

For further guidance and use cases for mixed-e˙ects models in EdSurvey, see the vignette titled Methods 
Used for Estimating Mixed-E˙ects Models in EdSurvey. For examples of how NCES recommends using 
weighted mixed-e˙ects models, as well as their summary of the mathematical background and description of 
hierarchical linear model’s insuÿciency in this case, see Appendix D in the NCES working paper on analysis 
of TIMSS data at Using TIMSS to Analyze Correlates of Performance Variation in Mathematics. 
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Endnotes 

Memory Usage 

Because many NCES databases have hundreds of columns and hundreds of thousands of rows, the EdSurvey 
package allows users to subset data and run regressions without storing it in the global environment. Alter-
natively, the getData function retrieves light.edsurvey.data.frames into the global environment, which 
can be costly to memory usage. 

This package uses the LaF package to read in only the necessary data when needed for an analysis. Instead 
of storing all the data in memory, only some “header” information is stored as well as a link to the fle 
in question. When the user calls a function, only the data needed for that function is read in. It works 
seamlessly and reduces the memory requirements for a user’s machine. 

Factors and Factor Analysis 

R uses the concept of factors for data storage, which is a separate concept from factor analysis. In the case 
of the R storage method, it is simply a way of enforcing that valid data labels are the only labels that are 
used. 

Summary and Next Steps 

This vignette covered the basics of the EdSurvey package, such as preparing the R environment for analysis, 
creating summary tables with edsurveyTable, running linear regression models with lm.sdf, correlating 
variables with cor.sdf, and retrieving data for manipulation with the getData function. Aspects of the 
package relating to memory usage also were considered. 

If you are interested in manipulating the EdSurvey data in a similar manner as other data.frames, consult 
the vignette titled Using the getData Function in EdSurvey. 

For a full list of EdSurvey functions and documentation, use the R help viewer: 

help(package = "EdSurvey") 

Additional Resources 

Supplementary vignettes are available to assist in analyzing NCES data. Note that some of them are written 
with NAEP Primer data as examples, whereas others are relevant to international assessment or longitudinal 
data. 

Several vignettes are available to assist in analyzing NCES data: 

• Using EdSurvey to Analyze NCES Data: An Illustration of Analyzing NAEP Primer is an introduction 
to the basics of using the EdSurvey package for analyzing NCES data, using the NAEP Primer as an 
example. The vignette covers topics such as preparing the R environment for processing, creating 
summary tables, running linear regression models, and correlating variables. 

• Exploratory Data Analysis on NCES Data provides examples of conducting exploratory data analysis 
on NAEP data. 

• Calculating Adjusted p-Values From EdSurvey Results describes the basics of adjusting p-values to 
account for multiple comparisons. 
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• Using the getData Function in EdSurvey describes the use of the EdSurvey package when extensive 
data manipulation is required before analysis. 

• Using EdSurvey to Analyze NAEP Data With and Without Accommodations provides an overview of 
the use of NAEP data with accommodations and describes methods used to analyze these data. 

• Using EdSurvey to Analyze TIMSS Data is an introduction to the methods used in the analysis of large-
scale educational assessment programs such as TIMSS using the EdSurvey package. The vignette covers 
topics such as preparing the R environment for processing, creating summary tables, running linear 
regression models, and correlating variables. 

• Using EdSurvey to Analyze ECLS-K:2011 Data is an introduction to the methods used in the analysis 
of the large-scale child development study Early Childhood Longitudinal Study, Kindergarten Class 
of 2010-11 (ECLS-K:2011) using the EdSurvey package. The vignette covers topics such as preparing 
the R environment for processing, creating summary tables, running linear regression models, and 
correlating variables. 

• Using EdSurvey for Trend Analysis describes the methods used in the EdSurvey package to conduct 
analyses of statistics that change across time in large-scale educational studies. 

• Producing LATEX Tables From edsurveyTable Results With edsurveyTable2pdf details the creation of 
pdf summary tables from summary results using the edsurveyTable2pdf function. 

Methodology Resources 

Documents that describe the statistical methodology used in the EdSurvey package include the following: 

• Statistical Methods Used in EdSurvey details the estimation of the statistics in the lm.sdf, 
achievementLevel, and edsurveyTable functions. 

• Analyses Using Achievement Levels Based on Plausible Values describes the methodological approaches 
for analyses using NAEP achievement levels. 

• Methods Used for Gap Analysis in EdSurvey covers the methods comparing the gap analysis results of 
the EdSurvey package to the NAEP Data Explorer. 

• Methods Used for Estimating Percentiles in EdSurvey describes the methods used to estimate per-
centiles. 

• Methods Used for Estimating Mixed-E˙ects Models in EdSurvey describes the methods used to estimate 
mixed-e˙ects models with plausible values and survey weights and how to ft di˙erent types of mixed-
e˙ects models using the EdSurvey package. 

• Methods and Overview of Using EdSurvey for Multivariate Regression details the estimation of multi-
variate regression models using mvrlm.sdf. 

• Methods and Overview of Using EdSurvey for Running Wald Tests describes the use of the Wald test 
to jointly test regression coeÿcients estimated using lm.sdf and glm.sdf. 

Reference 
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